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Disclaimer

This is the last ever file | wrote as of notes for courses, so | hope | matured enough having written this,
for every single course | have done up to now, bachelor and master included (and hope you saw and
used one, | tried my best always). So, | hope to have done something useful with these — | know that |

helped many and if | helped you | am glad, even though | was directly insulted and attacked by the few

people claiming to help others. | do not pretend to be exact, correct or precise, | think | am enough
though, just by reading one of these files you can understand it.

All of references are present and given it’s an informal file, shared between students, one does not
need a complete bibliography like papers —that | also wrote in other cases - for everything. Many
things can be found between the web or existing notes. But | think | did something useful, profound,
motivated by the will of community and helping both you and me, enthusiastic of learning and writing
(I think if you are not totally shallow to just take the credits and discredit unfairly other people you can
easily see that). | am leaving this to you. In case of feedback of whatever kind, contact me no problem.
Even to disagree with me, I’m always open for confrontation.

In any case: the file is organized not chronologically, but more content-wise, so you have theory first,
laboratories second (which were done many times coupled with the theory in detail, but for reading
sakes they are moved after the entire theory modules), so to immediately jump to content of your
interest when needed.

Another thing: many things were also translated by the professor notes in Italian (particularly, for the
metaheuristics part, partial in English, here complete with the class examples coming from
recordings) and also the Italian notes | recovered from GitHub of this course, written by Manzoli,
which are amazing in their own right and definitely useful for the most part (can recommend). If
possible, | tried, in my case as always if you read (for real) at least one file, to create a complete
resource (or as complete as possible) to be the only material of your reference. Slides not put by the
professor were taken by me from recordings and put on MEGA/Telegram.

The course was definitely a lot to work upon (but satisfying regardless): the theory doesn’t seem like it
in the beginning, but as seen by the file length and contents, well, you have to give a shit about that.
Also, the project, particularly for the second part, will be definitely time-consuming and something

which you have to work upon for quite a good amount of time.

There is a dedicated (informal) lesson for that at the very end of the course - since the professor
himselfis very knowledgeable but also very long in presenting lessons, each year some topics are cut
out simply because of lack of time. Just telling you, latest lessons starting from October were all the
way up to the half of January — and always at least 1.20/1.30 of lesson. So yeah.

That’s all folks! — fucking finally, let me say!
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2 INTRODUCTION (1)

We start from the concept of combinatorial optimization: given a problem, find the best solution
inside of a set. This problem often occurs inside different fields.

- There is no best solution starting from the beginning, neither does the number matter: an
optimal solution has to be determined among a number of alternatives that combinatorially
explodes — consider for example the bike sharing rebalancing problem here

- Mathematics provides tools in order to solve problems practically from the real point of view

- After this course, one is expected to have the “ability to search for, find, understand, adapt
and implement state-of-the-art approaches to solve real-world combinatorial optimization
problems”

Problems seem different, but in reality they are similar:

- Logistic and transportation network: optimal origin-destination paths, optimal pickup/delivery
routes, line configuration, driver scheduling

- Production management: production and resource planning, job shop scheduling, optimal
cutting patterns

- Machine learning: optimal structure and weight of neural networks, clustering algorithms

- Data-driven decision making: cooling schedule based on massive simulation, air traffic
management based on trajectory repositories

- Optimization on graphs and networks: coloring, cliques, quickest paths, multicommodity
flows

- Telecommunication networks: telecom-facility location, virtual network configuration, optimal
routing

- Complex network analysis: community detection, maximize influence

- and many others...

A toy problem is the following, combining constraints with the goal of earning as much as possible,
with no costs since all resources are there:

Goal:
10 T-shirts
REIRVA ST
u‘ii_'T | S=_===
(o |2 — e
15 bags .}_f"tf}f l\'?‘g E :%:é.%"
Lf_-’f,w_‘ —
e~ =
%{ 32 drawings o
Decisions:
%] 24 labels
. how many
- 2 ?
/ 40 profiles ,'75"?' .;-?El - T, B 4
I_I 'lll/_"'; !I__“j
(7 15 buttons 3] &

The model can be solved by the Simplex algorithm, in order to iterate until no more solutions are
present, in which we make inequalities in order to represent constraints and then understand the
feasibility of all of them.
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Given a problem, we do not go into its details; given any problem, how to manage the combinatorial

explosion of the size of the solution space using a unifying approach?

Consider a problem:

@ What should we decide? Decision variables

xr =0, xp =0

@ What should be optimized? Objective as a function of the decision

variables

max 6000 x7 + 7000 xp

o What are the characteristics of the feasible combinations of values for
the decisions variables? Constraints as mathematical relations

among decision variables

XT T Xp
7 xT

3XP

1DXT T 20Xp

11
70
18
145

A VA FA AN

(optimal total profit)

(
(tomato seeds)
(potato tubers)
(fertilizer)

Txp =70 | ———p  Gradient of the objective

~
~
~

(10,17
xptap=11

function

Level curves (orthogonal)
6000 x; + 7000 x, = K

10x7 +20xp = 145

(0,0)

] 11
(10,0)

Xy

There are different exact methods to solve problems with integer variables: Cutting planes [improved
geometry], branch-and-bound [implicit enumeration] (computational resources!) — they may take long
computational times, since they are NP-Hard problems.

Aviable choice might be focusing on discrete choices, so to apply heuristic methods: exact methods

may be theoretically and computationally critical, heuristics still work.

Keep an eye to the course programme and general info here.
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3 MODELING BY LINEAR PROGRAMMING (2)

A toy example is the following, coming from the Introduction set of slides — here, the variable are
continuous - keep in mind:

“A farmer owns 11 hectares of land where he can grow potatoes or tomatoes. Beyond the land, the
available resources are: 70 kg of tomato seeds, 18 tons of potato tubers, 145 tons of fertilizer. The
farmer knows that all his production can be sold with a profit of 6000 Euros per hectare of tomatoes
and 7000 Euros per hectare of potatoes. Each hectare of tomatoes needs 7 kg seeds and 10 tons
fertilizer. Each hectare of potatoes needs 3 tons of tubers and 20 tons fertilizer. How does the farmer
divide his land in order to gain as much as possible from the available resources?”

We will translate such model as seen above with the following ones:

- Decision variables, symbolizing the decisions to be made

- Objective, meaning what we would have to optimize
- Constraints, which is a system of inequalities useful for the solution in order to be feasible

This all works because both the constraints and the objective function are linear, and the variables are
real numbers. This type of modelis therefore called Linear Programming.

Note that in this case the optimal solution is on an integer vertex, but it’s only the case. If the variables
used can only be integers the situation becomes more complex because approximations must be
made. If we have the models, we have the solutions - so, let’s focus on the models.

3.1 DESCRIPTION AND FEATURES

More specifically, a mathematical programming model describes the characteristics of the optimal
solution of an optimization problem by means of mathematical relations. It provides formulation and

a basis for standard optimization algorithms.

- Sets: they group the elements of the system
- Parameters: the data of the problem, which represent the known quantities depending on the
elements of the system

- Decision (or control) variables: the unknown quantities, on which we can act in order to find
different viable solutions to the problem

- Constraints: mathematical relations that describe solution feasibility conditions (they
distinguish acceptable combinations of values of the variables)

- Objective function: quantity to maximize or minimize, as a function of the decision variables
Mathematical programming models where:

- The objective function is a linear expression of the decision variables
- The constraints are a system of linear equations and/or inequalities
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Classification of linear programming models:

- Linear Programming models (LP): all the variables can take real (R) values
o There are poly-time algorithms for these — easy
- Integer Linear Programming models (ILP): all the variables can take integer (Z) values only
o These ones are NP-Hard - not easy
- Mixed Integer Linear Programming models (MILP): some variables can take real values and
others can take integer values only
o These are more difficult

3.2 OPTIMAL PRODUCTION MIX - PERFUMES

Linearity limits expressiveness but allows faster solution techniques - if we are able to linearize
models, they are simpler. From now on, we will discuss modeling schemas.

Consider the following example:
A perfume firm produces two new items by mixing three essences: rose,
lily and violet. For each decaliter of perfume one, it is necessary to use 1.5
liters of rose, 1 liter of lily and 0.3 liters of violet. For each decaliter of
perfume two, it is necessary to use 1 liter of rose, 1 liter of lily and 0.5
liters of violet. 27, 21 and 9 liters of rose, lily and violet (respectively) are
available in stock. The company makes a profit of 130 euros for each
decaliter of perfume one sold, and a profit of 100 euros for each decaliter
of perfume two sold. The problem is to determine the optimal amount of
the two perfumes that should be produced.

The variables here are continuous, since we are deciding the decalitres of perfume, so we call them:
- Xone» Xtwo fOr the two quantities of decalitres
Since they are real, we call them: x,,,, Xtwo € R.

There are constraints here, since these ones need to be respected in order for the model to be valid;
for example, on the availability on the liter of rose, we have 1.5 liters of rose and one liter of rose:

1.5%one + Xpwo < 27
Off we go with the other variables, so we have:
1.5%one + Xtwo < 27 (rose)
Xone + Xewo < 21 (lily)
0.3%pne + 0.5 <9 (violet)

Xone» Xtwo = 0 (domains of variables)
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A possible modeling schema is the following, to represent the optimal production mix:

@ set [: resources I = {rose, lily, violet}
@ set J: products J = {one, two}
@ parameters D;: availability of resource i € / e.g. Dipee = 27

@ parameters P;: unit profit for product j € J e.g. Pone =130

@ parameters Qji: amount of resource i € I required for each unit of

prOd”Ctj €J eg. Qrose one 1.5, Qh'.l’_v two 1
@ variables x;: amount of product j € J Xone, Xtwo
max ZPij
Jjed
s.t. Zong < D; vV iel
Jjed
xeRy [Zy | {0,1}] V jeJ

A side note: if we have negative numbers in variable for constraints, this means we are creating
resources, unless not specified inside of the constraints.

3.3 MINIMUM CoST COVERING - DIET

Another model called the diet problem:

Example

We need to prepare a diet that supplies at least 20 mg of proteins. 30 mg
of iron and 10 mg of calcium. We have the opportunity of buying
vegetables (containing 5 mg/kg of proteins, 6 mg/Kg of iron e 5 mg/Kg
of calcium, cost 4 E/Kg), meat (15 mg/kg of proteins, 10 mg/Kg of iron e
3 mg/Kg of calcium, cost 10 E/Kg) and fruits (4 mg/kg of proteins, 5
mg/Kg of iron e 12 mg/Kg of calcium, cost 7 E/Kg). We want to
determine the minimum cost diet.

&

We would need to minimize the cost, and the decision variable are kilos of veggies, meat and fruits.

min 4xy + 10xy + 7xf cost
s.t. b5xy + 1bxy + 4xg = 20 proteins
bxy + 10xy + 5x = 30 iron
5xy + 3xy + 12x > 10 calcium
Xy . XM . xk = 0 domains of the variables
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A more general schema for this problem is the minimum cost covering, also called infact diet
problem.

set I: resources I ={V,M, F}

@ set J: requests J = {proteins, iron, calcium}

@ parameters C;: unit cost of resource i € /
@ parameters R;: requested amount of j € J
@ parameters A;;: amount of request j € J satisfied by one unit of

resource i € /

@ variables x;: amount of resource i € /

min ZC;x,—
iel
s.t.
iel
X;E]R+[Z+|{O,l}] V-"E!

It’s important to create schemas inside of our mind since modeling needs to be modularized dividing
the data, the model and the formulations.

Side note: x; € R*[Z* | {0,1}] Vj €

Means the variables xj are non-negative real numbers, with the optional additional constraint of being
integers or binary.

This allows the modeling schema to be flexible and cover different variants of the problem:

- Continuous variables: just x; € R*
- Integer variables: x; € R*and Z*
- Binaryvariables: x; € R*and {0,1}

The modeler can choose which constraint is appropriate when applying this schema to a specific
production mix optimization problem. The square brackets succinctly show these options in the
general modeling framework.

3.4 TRANSPORTATION PROBLEM

Another problem, which is called the transportation problem:

Example

A company produces refrigerators in three different factories (A, B and C)
and need to move them to four stores (1, 2, 3, 4). The production of
factories A, B and C is 50, 70 and 30 units, respectively. Stores 1, 2, 3 and
4 require 20, 60, 30 e 40 units, respectively. The costs in Euros to move

one refrigerator from a factory to stores 1, 2, 3 and 4 are the following:
from A: 6, 8, 3, 4
fromB: 4, 2, 1, 3
fromC: 4, 2, 6, 5

The company asks us to formulate a minimum cost transportation plan.
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A possible schema to represent this one is the transportation problem:

@ set /: origins factories | = {A, B, C}

@ set J: destinations stores J = {1,2,3,4}
@ parameters O;: capacity of origin 1 € / factory production
@ parameters D;: request of destination j € J store request

@ parameters Cj: unit transp. cost from origin i € I to destination j € J

variables x;: amount to be transported from i € [ to j € J

min Z Z C,_,X,_’r

iel jeJ

s.t.
ZX,}' > D_[ Vjeld
icl
Y <0 Viel
jed

xjeRy [Z4|{0,1}] VieljeJ
To completely resolve the problem, we would have to write an example to represent cost minimization

- Acompany produces refrigerators in three different factories (A, B, C) and has to move them to
4 warehouses (1,2,3,4). The production of the factories is 50, 70 and 20 respectively. The
warehouses can contain 10, 60, 30 and 40 units

- The cost of moving refrigerators is shown in the following table:

Costo | 1] 2]3]4
A G|&8|3]4
B 2031113
C 2141615

3.5 FIXED CosSTS AND BiG-M CONSTRAINTS

Now we introduce the notion of fixed costs:

A supermarket chain has a budget W available for opening new stores.
Preliminary analyses identified a set / of possible locations. Opening a
store in i € | has a fixed cost F; (land acquisition, other administrative
costs etc.) and a variable cost C; per 100 m? of store. Once opened, the
store in i guarantees a revenue of R; per 100 m2. Determine the subset of
location where a store has to be opened and the related size in order to
maximize the total revenue.

Consider also a second scenario in which at most K stores can be opened.

These are problems of the kind where decisions are taken about what actions to take. Each action has
a fixed cost but produces some gain. The aim is to determine what actions should be taken under
some constraints regarding the actions.
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Modeling this problem requires a reasoning which might introduce non-linearity — we introduce for this
specific reason the concept of linear variables:

Modeling fixed costs: binary/boolean variables, non linear
@ set /: potential locations

@ parameters W, F;, G, R;
@ variables x;: size (in 100 m?) of the store in i € /

@ variables y;: taking value 1 if a store is opened in i € [ (x > 0), 0 otherwise

NON LINEAR formulation (correct, but we avoid it when possible [see next slide])

max Z R,' Xi Vi

iel

s.t.
Z Gxivi+Fyi<W budget
icl
Zy; <K max number of stores

i€l
x €R,, yie{0,1} Viel

We use binary variables to represent “IF” we open a store, then something happens; we want to keep
constraints linear in order to have acceptable times of computation for the algorithms of solvers
implemented.

Given this formulation would deviate the problem making it go into quadratic programming, we do not
do this but try to linearize it. There is a link between x; and y;, so we try to write this expression with a
constraint.

Modeling fixed costs: binary/boolean variables (linear)
@ set /: potential locations
@ parameters W, F;, C;, R;, “large-enough” M (e.g. M = argmax;c;{W/C})
@ variables x;: size (in 100 m?) of the store in i € /

@ variables y;: taking value 1 if a store is opened in i € | (x; > 0), 0 otherwise

max E R,’ X

iel

s.t.
Y Gxi+Fyi<W budget
icl
x;x<My; Yiel BigM constraint / relate x; to y;
ny <K max number of stores

iel
x; €R,, y; € {0,1} Viel

As you can see we introduce M, generally called Big-M, which is a modeling technique used in mixed-
integer programming to enforce logical conditions. In this case, it's used to relate the continuous
variable x; (store size) to the binary variable y; (whether a store is opened or not).

The Big-M value should be "large enough" to allow the maximum possible store size when a store is
opened (y; = 1), but also ensure that xi is forced to 0 when a store is not opened (y; = 0).
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This definition of M is clever because:

- It's large enough to never constrain a valid solution

- It's notunnecessarily large, which could lead to numerical issues in solvers

- It's based on the problem parameters, so it automatically adjusts if the budget or costs
change

This is only then a technicality to write quadratic constraints into a linear form.

In every feasible solution of this model, x; has no different value from:

W —F,
XiS C.
i

The constant must be small, but not that much.

Suppose we want to open at least three stores: so, the constraint should be Y;¢; v; = 3. This,
however, is not enough since there is no enforcement relationship between the x; and y;. This is, once
again, useful since the fixed cost notion is useful in fact for this.

Completely, just to see it under your eyes well-posed:

N= hax_Dovacs
Modeling fixed costs: binary/boolean variables (linear)
@ set [: potential locations N B

@ parameters W, F;, C;, R;, “large-enough” M (e.g. M =(arg max;c,{W/C:}{)

@ variables x;: size (in 100 m?) of the store in i € /

@ variables y;: taking value 1 if a store is opened in i € | (x; > 0), 0 otherwise

5 * =13
max i Xi S - .
i€l XJ =0 ¥ ¥ Fe
s.t.
> Gxi+Fy<W budget
iel
= M(:y; Viel BigM constraint / relafe x;
Y yi<K max number of stores
iel ,‘}:‘\
) e
xi€Ry, y;,€{0,1} Viel oy

One variant of this model is that which provides for an upper limit U; to the amount of action i € I that
can be taken. In this case, the BigM constraints can be replaced with x; < U;y;, Vi €]
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3.6 A MORE COMPLEX PROBLEM — MOVING SCAFFOLDS (+ 2 VARIANTS)

We have another problem, important for lab examples — moving scaffolds:

A construction company has to move the scaffolds from three closing building sites (A,
B, C) to three new building sites (1, 2, 3). The scaffolds consist of iron rods: in the
sites A, B, C there are respectively 7000, 6000 and 4000 iron rods, while the new sites 1,
2, 3 need 8000, 5000 and 4000 rods respectively. The following table provide the cost of
moving one iron rod from a closing site to a new site:

Costs (eurocents) 1 2 3

A 9 6 5
B 7T 4 9
C 4 6 3

Trucks can be used to move the iron rods from one site to another site. Each truck can
carry up to 10000 rods. Find a linear programming model that determine the minimum
cost transportation plan, taking into account that:

@ using a truck causes an additional cost of 50 euros;

@ only 4 trucks are available (and each of them can be used only for a single pair of
closing site and new site);

@ the rods arriving in site 2 cannot come from both sites A and B;

@ it is possible to rent a fifth truck for 65 euros (i.e., 15 euros more than the other
trucks).

The problem is referring to the transportation schema; with these class of problems, usually it is
useful to understand the similar problem(s) and then try to figure out the actual schema.

All of the elements are here:

Sets:
@ [: closing sites (origins);
@ J: news sites (destinations ). min Z Cijxj+ F Z vij+(L-F)z
icl jed il jed
Parameters:
@ Cj: unit cost (per rod) for transportation from i € [ to j € J, St Zx’j > R V jed
@ D;: number of rods available at origin i € /; icl
_ . > x < D Voiel
@ R;: number of rods required at destination j € J, ey
@ F: fixed cost for each truck; Xj < Kyj Voieljel
i < N
@ N: number of trucks; Z Yi = Ntz
ieljed
@ L: fixed cost for the rent of an additional truck; ya2+yg2 = 1
] . xj € Zy vV ieljeld
@ K: truck capacity. yi € {01} V ieljed
Decision variables: z € {0,1}

—@ x;;: number of rods moved from i € | to j € J;
o binary, values 1 if a truck from / € | to j € J is used, 0 otherwise.

@ z: binary, values 1 if the additional truck is used, 0 otherwise.
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Some comments, step by step:

- We want to take the origins and destinations, considering the costs of transportation but also
the material costs, which are fixed. The binary variables refer to the choice of using or not a
specific truck. There is also an additional cost for a specific truck, depending on the previous
choice

- Origins and destinations are to be respected and also linked, considering the truck capacity
and the fact specific trucks need to be available

s.t. Z Xjj = Rj‘ ¥ jed
il
Yox o= D voiel
jed
X = Ky ¥V oieljeld
Z Yij < N+=z
el ged
Yaz+yez = 1
X € Ey Voieljeld
vi € 10,1} V oicljeld
z = {0,1}

We did not consider this constraint, which is in some way logical:
@ the rods arriving in site 2 cannot come from both sites A and B;
Actually, since this is all numbers up to now (linear), we should not represent such relationship as the
following (logical constraint):
A, NAND B,

The situation would be represented by the following:

A construction company has to move the scaffolds from three closing building sites (A,
B, C) to three new building sites (1, 2, 3). The scaffolds consist of iron rods: in the
sites A, B, C there are respectively 7000, 6000 and 4000 iron rods, while the new sites 1,
2, 3 need 8000, 5000 and 4000 rods respectively. The followi rovide the cost of
moving one iron rod from a closing site to a new site:

Costs (euro cents) 1 2 3 NARLD
A 9 6 5 v
B 7 4 9 ~
C 4 6 3 v

Trucks can be used to move the iron rods from one site to\another sitd. Bach trifek can
carry up to 10000 rods. Find a linear programming m the minimum
cost transportation plan, taking into account that:

@ using a truck causes an additional cost of 50 euros;

@ only 4 trucks are available (and each of them can be us
closing site and new site);

@ the rods arriving in site 2 cannot come from both sites

@ it is possible to rent a fifth truck for 65 euros (i.e., 15 euros more than the other
trucks).
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Of course, we should be able to represent such construction (since this is a Boolean operator), similar
to a truth table as a combination of feasibility and infeasibility; the right way would be:

Yaz +¥Yp2 =1
However, we can construct a variant of the previous considering:

@ truck capacity K does not guarantee that one truck is enough
» how many trucks per (i,j)? = variables w;,z € Z, instead of
vij»z € {0,1}

With binary variables, we would represent the situation as the following:

~D ) Teeq
O 7 “{‘_:69/3
1 ©

Py,
HAL’{UDBZ é/,L

A constraint like the following would make the model non-linear:

Actually, to write this, we would write something like the following, but the ceiling function is not
linear:

. Xij
min ) ¢;;x;; +FY [7

We link the two variables with a linear inequality, also adding an integer variable w;, writing for
example a relationship between the already-existing decision variables:

Xij
J
=T
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This way, it becomes a linear expression. The following is the complete reasoning that brings us to
these conclusions (better up to now from an algorithmic point of view):

[Suggestion: compose transportation and fixed cost schemas]

min Y Cyxj+ F> )z

e 77
il ged fefjed
¥ jed
A= /
iy T e F'.]I‘ -.ﬂ
¥ oieljeld
v oicljeJ

In complete form, it appears like this (moving scaffolds —variant 1 — limited truck capacity). We cannot
write the following into the model, it’s not linear to use the ceiling function:

@ truck capacity| K Hoes not guarantee that one truck is enough
» how many trucks per (i.f)? = variables w;, z £ Z, instead of
¥y T C {0 1}

prm S Gty i—f‘li K}"E :

X.{,J

K

Ceiling is an unknown; the number of needed tracks using linear constraints combines with a relation
(division) numbers to use the ceiling and make it linear:

@ truck capacit}roes not guarantee that one truck is enough
» how many trucks per (/.)7 = variables wy. z £ 2, instead of
vz € {0,1}

Yo _S‘_r:m l—?“ca
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Now, completely:

min Z Cixy+ F Z wij+(L-—F)z

i€l jeJ icl jed
s.t. ZX,-J,- > R; Y jed
icl
Y 4 £ B V i€l
i jeJ _ '
%AL*&B)_\{(— xj < Kwj V ieljelJ
Z wij < N+ z
n icl jed
%4 € Y xj € Zi V iel,jed
<ty wj € Z, Voieljed
L fjg) z € Z,

In conclusion:

A possible variant of this problem may be the addition of constraints on the maximum capacity K of
trucks. Previously it was assumed that K was high enough to ensure that a truck could move
everything needed. To manage this situation you need to change the variables y; ; € {0,1} into whole
variables, which represent how many trucks are needed in a given route.

As a result, some constraints also change:

min z Cijzij + F Z wij +(L—F)z

el jed icl jed

Tij = R'u.-‘g__j Yiel,jeJ

Instead consider this other option, based on the following constraint (moving scaffolds —variant 2 —

fixed costs to load the trucks):

@ additional fixed cost A; for loading operations in i € /
» does loading take place in i7 = variable v; € {0,1}

It’s better to move stuff in a mixed way, where each operation has fixed costs, which represents the
decision “should | move something from 1?”:
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19 MeMoCO Simple (for real)

Constraints are once again linear, so everything works:
@ additional fixed cost A; for loading operations in i € /
» does loading take place in i? = variable v; € {0, 1}

&
min Z Cixij+F Z W.',+(L*F)Z*mvi

iel,jed i€l jed ic]
s.t. Y% = B VY jeJ
icl
- A
S
xi < Kwj YV iel,jeld
Z wj < N4z
iel.jeJ
xj € Ly V iel,jeld
w; € Zy V ieljed
v € {0,1} v n€l
z € 4

So, in conclusion:

There is a fixed cost for loading the beams into I. To model this, a binary variable is used which is 1 if
goods are loaded into site i. Model changes concern target function and trigger constraints for new
variables v; € {0,1}:

min Z Cijrij+ F Z wij+(L—F)z+ Z A

icl jed icl jet icl
E ri, ] < Dy Wiel
Jed

Sometimes modelling does not mean reinventing the wheel, but instead adopting a literature-based
one and then constructing a problem upon it. Perhaps you may find it somewhere but adapt it to your
problem.

Let’s try to complete the following:
Exercise: complete with the "logical” constraints ya» + ve2 < 1 and try to generalize it.
To complete the model with this constraint and generalize it, we can add:
yij+ykj <1 Vikeli :/:k,VjE]

This constraint ensures that for any destination j, at most one origin site can send rods there using a
truck. In other words, the rods arriving at site j cannot come from both sites i and k.

The specific constraint y4, + Y5, < 1) is just one instance of this more general constraint, ensuring
rods arriving at site 2 cannot come from both sites A and B.
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Adding this generalized constraint to the model gives:
min Yiepjes Cij * Xij + F * Yierjey yij + (L — F)z
S.t.ierXxij = R, Vj €]

Yjeyxij<D; Vi€l

xijj<K=xy; Vielje]

Yienjej Yij SN +z

Yijtykj<1 Vikeli#kVj€E]

x;j € Z* Viel,je]

vij €{0,1} Vielje]

z €{0,1}

This generalized constraint captures the requirement that rods arriving at any destination cannot
come from multiple origins using trucks, which is a logical extension of the specific constraint given
for site 2.

3.7 EMERGENCY LOCATION — MINIMUM COST COVERING

Let’s go on with the following exercise —emergency location schema:

A network of hospitals has to cover an area with the emergency service. The area
has been divided into 6 zones and, for each zone, a possible location for the
service has been identified. The average distance, in minutes, from every zone to
each potential service location is shown in the following table.

Loc. 1 | Loc. 2| Loc. 3| Loc. 4 | Loc. 5 | Loc. 6
Zone 1 5 10 20 30 30 20
Zone 2 10 5 25 35 20 10
Zone 3 20 25 5 15 30 20
Zone 4 30 35 15 5 15 25
Zone 5 30 20 30 15 5 14
Zone 6 20 10 20 25 14 5

It is required each zone has an average distance from an emergency service of at
most 15 minutes. The hospitals ask us for a service opening scheme that
minimizes the number of emergency services in the area.
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The problem is not so clear; is there a way to find a feasible solution for this problem? In this way, we
understand the decisions to make. Decisions are related to locations, so to open or not — using ofc
binary variables and relating them all between each other:

1. "& ¢ Yo
)Ct.- O th—h-’r\

A network of hospitals has to cover ah Srea_with tlée emérgency service. The area
ssible location for the
service has been identified. The average dlstance in minutes, from every zone to

each potential service location is shown in the following table.
Xe [(—= e e s AN

Loc. 1| LgE. 2| Loc. 3| Loc. 4 | Ldcb | Loc. 6
-9 Zone 1 5 ‘10 v 20 30 30 20
Zone 2 10 5 25 35 20 10
v
¢ éone 3 205 255 5 v 15 ¥ 30> 20 )("‘3-\-%,21
one 4 30 35 15 5 15 25
Zone 5 30 20 30 15 51 14
Zone 6 20 10| 20 25 14 | b5

It is required each zone has an average distance from an emergency service of at
most 15 minutes. The hospitals ask us for a service opening scheme that

- . . - - '_-_-_-__-—‘—
minimizes the number of emergency services in the area. <L

W Aq )(d,“"' - - 'Xé x4¥, 21

The actual schema where this comes from is the following, since we need to arrive to the hospital
within 15 minutes:

One possible modeling schema: minimum cost covering

@ set [: resources I={V,M, F}

@ set J: requests J = {proteins, iron, calcium}

@ parameters C;: unit cost of resource i € /
@ parameters R;: requested amount of j € J
e parameters A;;: amount of request j € J satisfied by one unit of

resource | € |

@ variables x;: amount of resource i € /

min ZC;X,-
i€l
s.t.
D Aixi > R; VjeJ
iel
x; € Ry [Z4|{0,1}] Viel
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We see the problem model changes a bit — this is a covering schema:

| set od potential locations (I = {1,2,...,6}).

x; variables, values 1 if service is opened at location i € [, 0 otherwise.

mn x + x + x3 + xa« + x5 + X5

s.t.

X1 + x > 1 (cover zone 1)
x4 x + x = 1 (cover zone 2)
x3 4+ xa > 1 (cover zone 3)
x3 + x3 + Xxs > 1 (cover zone 4)
x 4+ x + x = 1 (cover zone 5)
x2 + x + x = 1 (cover zone 6)

x ., x . x3 ., x . x ., x € {0,1} (domain)

Is the problem similar to something we already saw? Yes, since requests are related to zones, and we
want to cover locations.

One possible modeling schema: minimum cost covering

@ set [: resources I={V,M,F}

@ set J: requests J = {proteins, iron, calcium}

@ parameters C;: unit cost of resource i € /
@ parameters R;: requested amount of j € J

@ parameters A;: amount of request j € J satisfied by one unit of
resource | € /

@ variables x;: amount of resource i € /

min Z 4);,

iel

| Z,—>tﬂ_ vied

i€l
xi€R.[Z,]{0,1}] Viel

oF

This depends on whether we open a specific location or not:

x; variables, values 1 if service is opened at location 7 € /, 0 otherwise.

c, =1
mn x + x + x3 + x3 + X5 + X
s.t.
A-x + ',r_»xz ) 0/53 \\'—0,&5’ - = - > @ (cover zone 1)
X1 + x + x > 1 (cover zone 2)
X3+ xa > 1 (cover zone 3)
x3 + xa + X5 > 1 (cover zone 4)
Xs + x + x5 > 1 (cover zone 5)
X2 + x5 + x5 > 1 (cover zone 6)
XX . X ., x3 ., xa , x5 , xs € {0,1} (domain)

Written by Gabriel R.



23 MeMoCO Simple (for real)

3.8 TLC ANTENNAS — MINIMUM COST COVERING

A different problem is the following — TLC antennas location:

A telephone company wants to install antennas in some sites in order to cover six areas.
Five possible sites for the antennas have been detected. After some simulations, the
intensity of the signal coming from an antenna placed in each site has been established
for each area. The following table summarized these intensity levels:

areal area2 area3 aread4d aread areab
site A 10 20 16 25 0 10
site B 0 12 18 23 11 6
site C 21 8 5 6 23 19
site D 16 15 15 8 14 18
site E 21 13 13 17 18 22

Receivers recognize only signals whose level is at least 18. Furthermore, it is not possible
to have more than two signals reaching level 18 in the same area, otherwise this would
cause an interference. Finally, an antenna can be placed in site E only if an antenna is
installed also in site D (this antenna would act as a bridge). The company wants to

determine where antennas should be placed in order to cover the maximum number of

dreds.

In this case, we want to cover all of the areas in which signal levels should be acceptable enough in
order to cover everything. We see here how the constraints are posed:

- A i YL
TLC antennas location ™" =" =
SL — Agd' xR, =24
A telephone company wants to install antennas\u.%’omwifésﬁn‘crdéft{cozsix areas.

Five possible sites for the antennas have been detected. After some sirrmratlons, the
intensity of the signal coming from an antenna placed in each site has been established
for each area. The following table summarized these intensity levels:

=T areal area2 area3 aread areadb areab
site A 10 20 16 25 0 10
a0 site B 0 12 18 23 11 6
¢ site C | 21 8 5 6 23 19
site D 16 15 15 8 14 18
site E 21 13 13 17 18 22

Receivers recognize BRIYISIgNaISIWNGSENEVeliSIatleastil8. Furthermore, it is not possible

to have more than two signals reaching level 18 in the same area, otherwise this would
cause an interference. Finally, an antenna can be placed in site E only if an antenna is
installed also in site D (this antenna would act as a bridge). The company wants to

determine where antennas should be placed in order to cover the maximum number of

areas.
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The problem is similar to the previous one, although there are slightly different constraints.

There is a set I with the possible sites and a set ] with the possible areas. The signal strength in area
J €] from the antenna at site i € [ is modelled by parameters o; ;. There is then parameter T which
represents the minimum signal strength (18) and N which is the maximum number of signals that can
overlap in an area (1).

- Thefirst difference with the previous problem is the objective function, before you wanted to
minimize the cost and now you want to maximize coverage

- The second difference concerns the constraints, which in this case are related to the signal
overlap and the minimum threshold

The choice, and therefore the variables, is where to place an antenna, so binary xi variables are used
which are worth 1 if an antenna is placed in site i. However, using only xi does not express well the
objective function, Another set of binary variables is needed to indicate whether a given area j is
covered (z;).

The modelis therefore:

max E ‘3;

Jed
st. Y mzm Yjed (1)
el o ;=T
< N+ _-Mr;“. — lej} Wi € J (2)
i€l >T
Td = Te vincolo sul siti Ee D

Constraints (1) link variables relating to the coverage of a given area with antennas which are able to
cover it. The constraints (2) require that an area be covered by at most N signals (1 for this instance of
the problem).

The second part of these constraints concerns areas we are not interested in covering, that is those
areas for which zj = 0, and therefore if there are interferences there are no problems. This works
because when z; = 0, the constraint becomes x; < N + M; where M; is a number large enough to
make the constraint redundant and does not go to limit the space of solutions. An optimal value for M;

is the cardinality of all sites covering area j, which is M; = |{i €l.o;; = T}|
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Decisions on areas should be made, considering whether we want to cover a specific area or not. We
need a remodeling based on redundant constraints on a binary variable which makes us question
whether the opening of specific areas or not is done:

@ /. set of sites for possible locations; J: set of areas;
parameter, signal level of antenna in i € [ received in j € J;
@ T: parameter, minimum signal level required;

O_Qi: parameter, maximum number of non-interfering signals (here, N = 2);

@ binary variable, values 1 if an antenna is placed in / € I, 0 otherwise;

:d_;'p_ azea. )€ J coutnel O ot
max jze;l i ;{__ ’é\j‘:i
,2-2\) O/\C..# %ﬁe';J\:)

s.t. >
. N <[ Zf
— Z x;g@f); “J_}G._ID

xS

i€ f‘a,]>T

iclta; =T - =
69 ALz,
= xi € {0,1} Viel
z; € {0,1} vjed

Levels depend on the zones covered and the signals reached, whether they are installed within
specific sites or not:
@ /. set of sites for possible locations; J: set of areas;
oij: parameter, signal level of antenna in i € [ received in j € J;
T: parameter, minimum signal level required;
N: parameter, maximum number of non-interfering signals (here, N = 2);

M;: parameter, large enough, e.g. @} card({i € | ﬁ_ 7\(

x;: binary variable, values 1 if an antenna is placed m\I‘FT./Ootherwse;

z;: binary variable, values 1 if area j € J will be covered, 0 otherwise;
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Can we write linearly the opening conditions? Not so much, since if we cover a site, we do not cover
the other one:

AP LS =1

A telephone company wants to install antennas\n.%omevifé‘;‘ln‘o‘rdﬁfté:ozsix areas.

Five possible sites for the antennas have been detected. After some sinﬁl’atlons, the
intensity of the signal coming from an antenna placed in each site has been establish
for each area. The following table summarized these intensity levels:

TLC antennas location

o) oD
areal area2 area3 aread aread areab |
site A 10 20 16 25 0 10 F TT
site B 0 12 18 23 11 6 -
4_ site C | 21 8 5 6 23 19 vV OFF
site D 16 15 15 8 14 18 "l"' &
site E | 21 13 13 17 8y 22 I

Receivers recognize SRIJISIENaISIWNOSCHCVEINSIStIEaSEil8. Furthermore, it is not possible

to have more than two signals reaching level 18 in the same area, otherwise this would
cause an interference. Finally, an antenna can be placed in site E only if an antenna is
installed also in site D (this antenna would act as a bridge). The co

pany wants to

determine where antennas should be placgd in order tocGver the maxi
& == XD ' Bl

L XL D

O~ 0 ¢ x{(E

areas.

This brings to write the following constraint: = .

it

W e 1

3.9 JoB SCHEDULING PROBLEM - FOUR ITALIAN FRIENDS

We consider a different modeling schema — newspaper reading (four Italian friends):

Four Italian friends [from La Settimana Enigmistica]

Andrea, Bruno, Carlo and Dario share an apartment and read four newspapers: “La
Repubblica”, “ll Messaggera", “La Stampa” and “La Gazzetta dello Sport” before going
out. Each of them wants to read all newspapers in a specific order. Andrea starts with
“La Repubblica” for one hour, then he reads “La Stampa” for 30 minutes, "Il
Messaggero” for two minutes and then “La Gazzetta dello Sport” for 5 minutes. Bruno
prefers to start with “La Stampa” for 75 minutes; he then has a look at “Il Messaggero”
for three minutes, then he reads “La Repubblica” for 25 minutes and finally “La
Gazzetta dello Sport” for 10 minutes. Carlo starts with “Il Messaggero” for 5 minutes,
then he reads “La Stampa” for 15 minutes, “La Repubblica” for 10 minutes and “La
Gazzetta dello Sport” for 30 minutes. Finally, Dario starts with "La Gazzetta dello
Sport” for 90 minutes and then he dedicates just one minute to each of “La
Repubblica”, "La Stampa” and “Il Messaggero” in this order. The preferred order is so
important that each is willing to wait and read nothing until the newspaper that he
wants becomes available. Moreover, none of them would stop reading a newspaper and
resume later. By taking into account that Andrea gets up at 8:30, Bruno and Carlo at
8:45 and Dario at 9:30, and that they can wash, get dressed and have breakfast while

reading the newspapers, what is the earliest time they can leave home together?
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In this case, we refer to a schema so called Job-Shop Scheduling Problem (JSP), which has these

characteristics:

- No preemption

- Sequence constraints (specific reading order for each person)

- Release dates (different wake-up times)

- Single machine capacity (one newspaper can be read by one person at a time)
- Minimize makespan objective

The origin of the name comes from the sequence of operations on different machines (jobs), with
different workshops/facilities where processing happen, processing all jobs available (makespan):

@ Jobs: Andrea, Bruno, Carlo, Dario [set /]

@ Machines: "La Repubblica”, "Il Messaggero”, “La Stampa” and “La
Gazzetta dello Sport” [set K]

@ Processing times and order:
A: R (60) — S (30) = M (2) — G (5);
B:S (75) — M (3) — R (25) — G (10);
C: M (5) — S (15) — R (10) — G (30);
D: G(90) =+ R (1) = S (1) — M (1);
[param: Djk, processing times]
[param: o[i, f] € K, newspaper read by / in position £)]
o Release time: A 8:30 - B 8:45 — C 8:45 — D 9:30. [param Rj]
@ Objective: Minimize the Makespan (job-completion time)
@ No pre-emption

Let’s try to understand the model; the decisions are:

- “Atwhat time each person starts reading the newspaper”

- Minimize the maximum value in which each person finishes

- Thetime when each person finishes reading must be at least as large as when each person
finishes their last paper

miny = (Hilgx{hi,a[i,uq) + Dion ik}

At a time, people can have a conflict in which at the same time they read the same things — givenit’s a
decision. Now, let’s analyze each constraint:

- Linking the makespan to actual completion times
o Foreach personi,y must be 2 their start time on their last paper (a; |k|]) plus its
duration
- Noone can start their first paper (g[; 1]) before their wake-up time (R;)
- Personican't start their £ paper before finishing their (£2-1)" paper

hislia) = Ri Viel hie > hy + Dy
hi ofig) Z hiofie—1) + Diofie—1) Viel l=2.|K| hjx > hix + Dik

Given two persons and a newspaper, what is the exact order between the variables? We don’t know,
specifically the order between i, j, k, that’s where the variable Xijx comes from.
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The maximum function is not a linear function, so we have to linearize it, introducing y. We talk here
about disjunction consiraints, which represent union between binary variables and also their

intersection (e.g., different tfirns):

hix = Wi + Dje — M xiji VkeK,ieljel:i#j
ijhik‘f‘Djk—M(l—ijk) VkeK,iel,jel:i#]j
yeRy

hi, € Ry VkeK,iel

xijik € {0, 1} VkeKicljel:i#]

Their purpose is the following:

- These constraints handle the "either-or" situation where newspaper k must be read by either
person i or person j at any given time

- They enforce the resource capacity constraint (one newspaper can only be read by one person
atatime)

This is also represented by:

@ fyy: start time (in number of minutes after 8:30) of 7 £/ on k € K

B, ey

min max{h oli|k() + Di ofi k) }
st - S
i afi1) = R ¥ie
Bialid] = Miafie—1 + Diolii-n Vil i=2.. K|
S b = b+ Dt - .- VkeK il jelid]
7 by = 4+ Dy A VhkeKicljel:i#j

hi € B Vhke K iel

The maximum makespan has to be linearized and make constraint redundant when one stops reading
(introducing binary variables), choosing a specific order:

e

@ hy: start time (in number of minutes after 8:30) of i € [ on k € K;

@ y: completion time (in number of minutes after 8:30);

® xj: binary, 1if i € [ precedes j = [ on k € K, 0 otherwise,

min L&‘ -x{ hi ofi i) + Di ofi iy} nonlineart) % » 4 Kp = N
min ¥ L
o i i+ L . st Yy Zhige) + Diogwy” Vi€l
hiating 2 i wiel b > R; Vil
hr-a.[j;] = Wi gfie—1) + D',-G[J-; 1 Fielf=2..K| et . J L )
= I ' i Mot = Piapie—1) + D5 afii— viecl £=2.|K]|
—p b = hp + D[ < = O ‘”‘FK"“J"“""'?EJ' hie = hye = Dy — Mxg VkeK i€l jel: i
— bz . ke K el i) hi = by = D — M(L—xj) Wke Kicljel: isjs
y e By
hi & B FheKicl i © Fy Whe Kicl
X € {0,1} VkeKieljel:i#j xipe £ {0,1} TheKicljel i#j
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Completely:

This problem is similar to a scheduling problem, in which: some jobs (persons) have to
be processed by different machines (newspapers); processing times (reading times) are
defined; a specific order for the operations is given; one wants to terminate all operations
as soon as possible.

We introduce the following sets:

o [ set of persons;
o [{: set of newspapers;
the following parameters:
e Dy time in minutes needed by person i € I to read newspaper k € K;
e [ time at which person i € I gets up, in minutes after 8:30 (release time);

o M: a sufficiently large constant, such that M is larger than the optimal completion
time, e.g. M =60+, ;o D

e a[i,l]: newspaper read by person i € [ in position / € {1,2...|K|}. This parameter
defines the reading sequence of each person i. Note: a[i,!] € K and therefore it can
be used as an index for parameters and variables defined on K;

and the following variables:

e hye time (in minutes after 8:30) at which person i € I starts to read newspaper
ke K;

e y: completion time (in minutes after 8:30);

® 10 binary variable taking value 1 if person ¢ € [ reads newspaper k € K before
person j € I, () otherwise.

The constraints are the following:

min y
sty = h’-‘lf’i.m’l + Di:f’e.m Viel (1)
hig,, Zhig,, +Dig,,, Viell=2...K (2)
his,, =R Yiel (3)
hig =2 hjp+Djp — Mz Vi, ki#j (4)
hje = hig+Dije — M(1—x;58) Yi,jki#j (5)

The meaning of constraint sets is:

1. The makespan must be greater than or equal to the time of completion of each person’s last
activity. In short words these constraints ensure that everyone finishes reading before the y-
moment.

2. Avoid overlapping two steps of the same activity. A person cannot read two newspapers at
once.

3. The first step cannot be taken before the activity begins. A person cannot read while sleeping.

4. It states thatif the person i reads the newspaper k before the person j, the moment when
i begins reading k is any instant, while if i does not read k before j (x; j, = 0), theni must start
reading k after j has finished.
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5. Itrequires thatif the person i reads the newspaper k before the person j, the moment when j
begins reading k is subsequent to the instant when i ends. This and the previous link are
mutually exclusive.

Consider the following example:

Four Italian friends: a JSP, example

@ Processing times and order:
A: R (60) — S (30) = M (2) — G (5);
B: S (75) —+ M (3) — R (25) — G (10);
C: M (5) — S (15) — R (10) — G (30);
D: G (90) - R (1) = S (1) = M (1),

@ Release time: A 8:30 — B 8:45 — C 8:45 — D 9:30.

s M S
A A always before B
b N |
14-632
A
B /,' ‘ B before Aon S
&3 A4-40

The Gantt charts show two different scenarios for scheduling just A and B:

1. First Scenario (11:53 completion):
1. Shows A reading all papers before B
2. Resultsin alater completion time (11: 53)

2. Second Scenario (11:10 completion):
1. Shows B reading Stampa before A
2. Resultsin an earlier completion time (11: 10)
3. Demonstrates how allowing B to read Stampa before A leads to a better overall
schedule

This example illustrates key JSP concepts:

- Resource conflicts (can't read same paper simultaneously)

- Sequence dependencies (must follow specific order)

- Release time constraints (can't start before wake-up)

- Howdifferent sequencing decisions affect makespan

- The importance of finding optimal ordering to minimize completion time

The two scenarios effectively demonstrate how the disjunctive constraints work in practice — either
A reads before B or B before A on shared resources (newspapers), leading to different possible
schedules and completion times.
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3.10 ENERGY FLOW PROBLEM (SINGLE/MULTI)

We go into the details of a different problem here (energy flow problem), which can be used to
describe a Network Flow Problem, specifically a Minimum Cost Network Flow Problem, where we
discuss production capacities being sent between stations and units of energy which can be used:

A company distributing electric energy has several power plants and distributing
stations connected by wires. Each station / can:

@ produce p; kW of energy (p; = 0 if the station cannot produce energy);

@ distribute energy on a sub-network whose users have a total demand of d,
kW (d; = 0 if the station serves no users);

@ carry energy from/to different stations.

The wires connecting station i to station j have a maximum capacity of u; kW
and a cost of ¢;; euros for each kW carried by the wires. The company wants to
determine the minimum cost distribution plan, under the assumption that the
total amount of energy produced equals the total amount of energy required by
all sub-networks.

This production network flow example shows 5 nodes with their demand (d) and production (p) values,
moving the energy between places so to balance it.

Notes ; -

AN ATHER

A,ZZJP-:O

To plan the distribution we have to decide how much energy is transferred from one station to another
x;; =amount of energy transferred from i to j.

An interesting feature of this problem is that it can be modeled as a graph G = (N, A) whose nodes
correspond to the energy stations and the arcs represent the connections between the various
stations.

To simplify the problem modelling, it is possible to add a bv parameter for each v € N node in the
network which represents the difference between the demand that the station must satisfy and the
amount of energy it can produce:

- if b, is a positive value, the demand is higher than the station’s capacity and therefore energy
from other stations needs to be transferred
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- if b, is a negative value, the station produces more energy than needed and therefore the
excess energy must be sent to the other stations
- ifb, = 0, the station is self-sufficient or a transmission node because p, = d, = 0

We define the objective function:

min E Ci T

(.j)EA

Now, pose the constraints that each node receives exactly bv units of flow (negative if they are to be
removed) (node balance constraint).

E Tin — Z x,; =b, VveN

[ERDIN {v,g)eA
S— — —
flusso in ingresso  flusso in uscita

Finally, it is necessary to impose a limit on the capacity of cables (arc capacity constraint):

rig<uy (i,j)eA
This model has unique features, representing a minimum cost flow inside of a network: generally, we
can describe the below as: “Find the cheapest way to send energy from producers (supply nodes) to
consumers (demand nodes) through a network of wires (arcs), respecting capacity limits and ensuring
flow balance at each station (node). Consider the flow has to be balanced between the quantity
coming in and the quantity coming out.

Network flows models: single commodity
Parameters: wuj;, ¢; and
G = (N, A), N = power/distribution stations, A = connections between stations
b, =d, —pv, ve N [demand (b, > 0)/supply (< 0)/transshipment (= 0) node]
Variables:

x;j amount of energy to flow on arc (i,j) € A

min 5 Cij Xij

(iJ)EA

s.t. Z Xiy — Z Xyj

(i,v)EA (vij)EA

i 5
/,? xi € Rs

b, VveN

IA

up Y(i,j)EA

This is a single-commodity type of problem, where there is one type of flow, where each arc has one
capacity constraint, which is easier to solve.

One variant of the problem is where there are each station handles various types of energy and the
cost of transport depends on the type.

- The capacity of the bows is not affected by the type of energy passing through

- The solution to this problem is similar to that of the classical version, with the difference that
another index is used for parameters and variables which discriminates between types of
energy
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This is the multi-commodity variant, where there is shared arc capacity across commodities but also
flow conservation per node AND per commodity.

- Thisis more complex to solve because many more variables and constraints are needed since
the flows depend on each other. If these were independent it would be possible to decompose
this problem in |K| minimum flow problems and then combine the various solutions

Parameters: wuj, cj‘ K (set of energy types or commodities) and
G = (N,A), N = power/distribution stations, A = connections between stations
b =d¥f — pf, v € N [demand (b* > 0)/supply (< 0)/transshipment (= 0) node]
Variables:
%) amount of energy of type k to flow on arc (i, j) € A

. kK
min E E C,:J'X,'J'

KEK (i )EA

s.t. Zx,t—Zx:} = b VYveN VkeK
(iv)EA (vJ)EA

Yoxj € wp V(ij)EA
kEK

xf € Ry V(Lj)JEA YkeEK

)

Minimum Cost Network Multi-commodity Flow Problem |

3.11 OTHER MODELS: PHARMACY FEDERATION TURNS (VARIANT 1 AND 2)

In this section, using older notes, we want to complete the topic of modelling by including other
models present inside of the notes by the professor.

5. The pharmacy federation wants to organize the opening shifts on public holy days
all over the region. The number of shifts is already decided, and the number of
pharmacies open on the same day has to be as balanced as possible. Furthermore,
every pharmacy is part of one shift only. For instance, if there are 12 pharmacies and
the number of shifts is 3, every shift will consist of 4 pharmacies. Pharmacies and
users are thought as concentrated in centroids (for instance, villages). For every
centroid, the number of users and pharmacies are known. The distance between
every ordered pair of centroids is also known. For the sake of simplicity, we ignore
congestion problems and we assume that every user will go to the closest open
pharmacy. The target is to determine the sifts so that the total distance covered by
the users is minimized.

In this case we want to decide which pharmacy does which shift, so that there is good coverage of the
territory, assuming that people go to the nearest pharmacy. The aim is therefore to minimise the road
people have to take to reach the pharmacies on duty. You certainly need a variable that specifies
which pharmacy is open in which shift.

1 la farmacia i & aperta nel turno k
Yik = . .
(0 altrimenti
withi € P,k € (1,...K), where P is the set of pharmacies and K is the number of turns we want to be
done. To express our objective function we need other variables, because we also have to consider
the distance of pharmacies, so that we can minimize it.
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- There will then be set C of clients that need to be served and parameters specifying the
distance D; ;. The distance between a customer j € C and the pharmacy i € P.

- However, the distance to be travelled by the user depends on which pharmacies are openina
given shift and therefore it is not advisable to use the parameter directly, since the distance
varies according to the shift

- Itistherefore advisable to add a variable specifying how much road the customer j must take
during shift k to reach the nearest open pharmacy

dj, = distance between customer j and nearest pharmacy during shift k

However, it is necessary to somehow connect the variables dj; with the opening/closing of
pharmacies. There is therefore a way of discriminating against which pharmacy the user goestoin a

1 se j va nella farmacia 1 durante il turno k

0 altrimenti

given shift:
-r_j:t':ﬁ' = {

This way it is easy to find value for d; ;, because the constraint is enough:

dix =Y Djwjin YjECkEK

ieP

With this constraint only a distance is considered for each shift, because during a shift the customer
always goes to the nearest pharmacy and then, set a j and a k, there will be only one x;; ; which is 1.
The solver does not know this last thing and therefore it is necessary to add the appropriate

constraints: . )
Z.I,'.;':t'_;.- =1 VjelCkekK

i€ P
There is still no requirement that each pharmacy should work exactly one shift, which can simply be

added with a sum on the y; ;: K

Zy,—_ﬁ. =1 YieP

k=1
To complete the model it remains to connect the x with the y, because obviously a customer cannot

goin a closed pharmacy. Tk SYik Vigk

It also remains to be required that each shift be balanced, that is, there should always be a similar

Pl o P
LT _'-Z.Ut_ﬁ': T v k

ic P

number of open pharmacies:

We then specify variables domains:
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Too bad there’s a problem. With the current constraints we have expressed that for each shift a
customer always goes to the same pharmacy and that that pharmacy must be open, but it is not
specified that the customer goes to the nearest pharmacy.

- Actually this is not a problem, because it is during the optimization process that the various
distances are set to be minimized

- Thisis because the objective of a modelis to describe the characteristics of a solution, while it
is the solver who is looking for the optimal solution performs minimization

- Infact, a solution that sends a customer to a different pharmacy from the open one closest to
him is still an acceptable solution, but it is certainly not great and therefore discarded

Some observations:

- Once an optimal solution has been found for this problem, it can be observed that by
swapping the order of turns obtained, another optimal solution is obtained with a different
order

- Thisis caused by the fact that once the pharmacies are chosen which are open in the various
shifts, the order in which the shifts are carried out is indifferent, thus obtaining a symmetrical
solution

- The presence of these symmetries is typically a problem because it can lead to a
combinatorial explosion of solutions

- The origin of these symmetries is typically caused by the model, in this case the problem
stems from the fact that "a name" is given to the turns and it is not always possible to re-model
the problem so that there are no symmetries

An alternate version for this problem formulation is the following one.

Since we have a set of pharmacies P and each pharmacy only does one shift, we can see a shiftas a
subset of P.

The choice of shifts becomes a choice of which subsets to select from the set of 27 parts. This choice
can be modelled with a binary variable.

1 se il sottoinsieme J & un turno 5
~;={ vJcP.Je2!

0 altrimenti

With this variable there is no symmetry as the variable is directly related to the turn it represents. The
minimization to be done then becomes (j represents the customers, J the turn).

min Z E Dj jx g

Je2F jeC

In the objective function, the variable d]-’k no longer appears, but a parameter D; ; appears, because in
the previous formulation the composition of the various shifts was variable and consequently the
distance also changed according to the composition of the shift, With this new model | know a priori
which pharmacies belong to a certain shift and therefore for each shift and for each client | can pre-
calculate the minimum distance.
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There are other constraints that need to be re-formulated. To specify that you are exactly K turns, just

add up the x;.
Z xTry= R-

Jezf
Itis also necessary to impose the constraint that each pharmacy should work exactly one shift,
because at the moment the same pharmacy can appear in several shifts (subsets). In this case, an
additional parameter is needed to specify whether a pharmacy is on a certain shift.
A — 1 seielt v J e oP
' () altriment

Note that it is a parameter and not a variable because it is a value that can be pre-calculated when the
set of parts is constructed. With these parameters it is easy to establish the constraint that a
pharmacy should only take one shift.

Z Ajjry=1 YieP

Jeak
It remains to shape the fact that shifts must be balanced, but to do this we do not need new
constraints. In fact it is sufficient to consider, instead of the whole set of parts 2P asubsetG
composed only by the subsets of P that have similar cardinality.

" _ - r @ < < ﬂ
G—{.r .162.[KJ_~|.I: S|

This model has no symmetries and is quite simple, however it suffers from a big problem: if there are
100 pharmacies, the calculation of the set of parts of P and parameters can take too long because of
the exponential growth of the cardinality of the set of parts.

3.12 OTHER MODELS: BOAT CONSTRUCTION

3. Constructing a boat requires the completion of the following operations (the table
also gives the number of days needed for each operation):

Operations Duration Precedences

A 2 none
B 4 A

C 2 A

D 5 A

E 3 B.C
F 3 E

G 2 E

H 7 D.E.G
I 4 F.G

Some of the operations are alternative to each other. In particular, only one of B and
(C needs to be executed, and onlv one of F and G needs to be executed. Furthermore,
if both C and G are executed, the duration of I increases by 2 days. The table also
shows the precedences for each operation (i.e., operations that must be completed
before the beginning of the new operation). For instance, H can start only after
the completion of E, D and G (if G will be executed). Write a linear programming
model that can be used to decide which operations should be executed in order to
minimize the total duration of the construction of the boat.
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First, let me explain the key elements of the problem:

1. We have 9 operations (A through I) with given durations and precedence relationships
2. There are two pairs of alternative operations:

o Either B or C must be executed (not both)

o Either F or G must be executed (not both)
3. Special condition: If both C and G are executed, operation I takes 2 days longer

Let’s see now the key components of this model:
Variables:

- t;: Completion time of operation i

- y;: Binaryvariable for alternative operations (B, C, F, G)

- Ycg: Binary variable that tracks if both € and G are executed
z: Overall completion time (objective to minimize)

Constraints:
1. Precedence relationships (e.g., tg = ty + dp)
2. Mutually exclusive operations (yg + yc = land yr +y; = 1)
3. Special condition for I's duration when C and G are both selected
4. All operations complete by time z

To find the optimal solution, we need to:

1. Determine which alternative operations to select
2. Schedule the selected operations to minimize total duration

The optimal solution to this problem would be:

1. Select operation B over C (better for precedences)

2. Select operation F over G (shorter path to completion)

3. Schedule operations in thisorder: A (0 —2)B (2—-6)D (2—-7)E (6 —9)F (9 — 12)H (12 —
19)I (19 — 23)

4. Totalduration =23 days

This is optimal because:

- Choosing B (4 days) over C (2 days) allows for better parallel execution with D
- Choosing F over G avoids the 2-day penalty on operation |
- ThecriticalpathisA = B - E - F - H > |

The following MILP formulation:

- Minimizes overall completion time

- Ensures precedence relationships are respected

- Handles alternative operations through binary variables

- Captures the duration increase for operation I when C and G are both selected
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2.3 Solution of Exercise 3 (hints)

A possible model is the following (its generalization is left to the reader):

min 2
st. z=t, WieA.l
tg =y

tg = ta+dg — M(1 —ys)
to = ta+de — M1 —ye)
tn=ta+dp

tg 2 tp +dg

tg =t +dg

tp = tp+dp — M1 —yp)
tg =ty +dg — M{1 —yg)
ty = tp +dy

ty =it +dy

bt 2 g +dy

tr 2t +dr 4+ 2y0n

tr = te +dr + 2yen

ys +yc =1

yr+yg =1

Ye +¥e <=1+ yeq
=0 Wie {ALT}
y. {01}

where

t; variable related to the completion time of operation i {~1 B.C,
D EFGHIY}

yi binary variable taking value 1 if operation ¢ € {5, C, F, G} is executed, 0 otherwise;

Yoo binary variable taking value 1 if both € and G are executed, ) otherwise;

o

variable indicating the completion time of the last operation;
d, parameter indicating the duration of operation i;

M sufficiently large constant.

A more general representation is left here for the reader.
Sets

T: set of tasks

- P S TT:precedence relationships
- A ={A4,..., A} groups of alternative tasks where each 4; € T
I ={(S,t,8)}: task interactions where:

o § € T:setofinteracting tasks

o t €T: affected task

o O:durationincrease
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Parameters

- di: duration of task i
- M: large constant

Variables

- t; =2 0: completion time of taski

- yi€{0,1}:1iftaskiis selected

- ws €{0,1}:1ifalltasks in set S are selected
-z = 0:project makespan

Objective: min z
Subjectto:

Time constraints

- Precedencerelationships: t; > t; + dj — M(1 — y;),V(i,j) € P
- Projectcompletion:z>t,VieT

Selection constraints

- Alternative tasks: Z'jeAi yi=1LVA, €A
- Taskexecutioncontrol: t; <M *y;, Vi €T

Interaction constraints

- Detecting task combinations:

o Ziesyi —ISI+1 < ws, V(S t,8) €]
1
o ws < () Zuesy V(S LO)EI

- Duration adjustments: t, > t;+dc + o *ws V(5,t,8) € ILVj:(j,t) € P

Example application (boat construction):

- Tasks B/C are alternatives: yg + yo =1

- Tasks F/G are alternatives: yp +y; = 1

- Duration increase for  when C and G selected: weg 2 yc + Y — 1t = tp + 4 + 2weg ) 2
tg +4+ 2weg

This formulation emphasizes the time-based aspects while maintaining the logical requirements of
task selection and interaction. It provides a clear structure that can be extended to handle additional
practical considerations like resource constraints.
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3.13 OTHER MODELS: ROUTER COMMUNICATION NETWORK

8. A communication network consists of routers and connections routes between pairs
of routers. Every router generates traffic towards every other router and, for every
{ordered) pair of routers, the traffic demand has been estimated (this demand is
measured in terms of bandwidth required). The traffic from router ¢ to router j
uses multi-hop technology (the tratfic is allowed to go through intermediate nodes)
and splittable flow technology (the traffic can be split along different paths). For
every route, the capacity (how much How can be sent) is known, and the unit cost
for each unit of flow is also known., The target is to send the data How at the
minimum cost.

Sets

- N:setofrouters (nodes)
- A:setof possible connections between routers (arcs)
- K:setof commodities, where each k € K represents a traffic demand from o(k) to d (k)

Parameters

r(k): traffic demand for commodity k € K
- uy: capacityofarc (i,j) €A
cij: unit cost for flowon arc (i,j) € A

b¥;: node balance for commodity k at node i, where:

bk_{—r(k), if i =o(k)
E7 4 (), ifi=dk)

Variables

- x*; > 0: flow of commodity k on arc (i, j) € A

Objective Function

; k
min 2 jyeaskek CijXij
Constraints

- Flow Conservation: For each node i € N and commodity k € K > ¥; jea x5 — X(j.nea X/ = bf

- Capacity Constraints: For each arc (i,j) € A > ZkElekj < u;j

- Non-negativity: For each arc (i,j) € A and commodity k € K > x{‘j >0
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4 METAHEURISTICS (3)

Let’s start by considering a different example: a flash game, used to assign surgical operations,
according to the availability of surgery rooms (which are three); each day of the week has grey zones,
which is the actual time available for that room and that day. We are tasked to solve this problem,

considering the priority is by color (red: most urgent, then orange, yellow, green, blue, white) — doing

as much operations as possible.

Let’s try to first think about strategies and then write the actual algorithms — given the optimization
problem, we find the most similar problem, creating a mathematical model. For example, we are

going to look out for papers, keeping out for the actual content and where their publications come

from.

- Forexample, a good paper to use here would be “Solving surgical cases assignment problem

by a branch-and-price approach”, which having a read seems the most similar to this problem

- We also see the paper implementation of the modeling schema (below) thought to be correct
and then the professor implementation (next page)

Some notes

Ncase
number of surgical cases waiting to be operated;

Nday
number of days for planning period (normally one week, Naay=5);

surgical cases’ set, Q=1...., Nease:

ti
operating duration of surgical case i;

D;
deadline of surgical case i whose unit is 1 day;

Mg
number of operating rooms available in a hospital on day d;

total operating cost of operating room k on day d (unexploited or overtime
operating cost);

TO RS
ordinary opening duration of operating room k on day d;

TS}
maximal overtime of operating room k on day d;
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Decision variable:
z?k = 1 if surgical case i is assigned to operating room k on day d; 0 otherwise.

A GIP formulation can be constructed for the concerned SCAP as follows:

5 Nawy My ~d
min }_ % 30 CF

s.L
Dot =1for all i€Q and D; < Ny, m
My Me 4 _for all i€ and  D; > Nuy @)
S 2 STOR +TSEde{1,... ,Nuwb, ke{l,..., M} 3)
A e{0,1} i€0,defl,..., Ny}, ke{l,...,My} 4)
where,
Gf = wax { (TORY — Yoo ti ) , 8 (Yicq i, — TORY) } d )

e{1,...,Nday},ke{1,...,M,j},

The objective function seeks to minimize total unexploited or overtime operating cost.
Constraints (1), (2) ensure that each surgical case, whose deadline is less than or equal to
Naay, should be treated exactly once before its deadline and the others should be
operated at most once over the planning period, respectively. Constraint (3) guarantees
that the total operating time of any operating room will not exceed its maximal overtime.
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Coming back to our problem, we are trying to use something which can optimize the decisions, which
will become useful later for the actual definition of this chapter:

- Forexample, let’s try to write an algorithm to have priorities assigned according to how they
possibly fit, one by one
o This may not work, but computationally it’s fast
- Anotheridea would be to try to assign the priorities randomly, given it takes basically no time,
and then getting all of the solution
o Randomness can come into play, trying to design some kind of fitting algorithms
o Forexample (remember Operating Systems? — worst fit/first fit/best fit — see here)
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A solution might be found by applying the best fit algorithm:

Costo = 47 Costo minimo = 3 Scostamento = 44 (1466.67%)

Another idea is perturbing the system a bit in order to obtain better and better solutions, adopting this
as arule to refine and improve progressively what we get as output, once we do not need to find the
optimal solution.

4.1 CLASSIFICATION OF METHODS

We have a class of algorithms not trying to guarantee the solution optimality designed to provide
“good” solutions, not the “optimal” ones (which required further overhead considering parts in the
computation not needed to find the optimal solutions). So:

- Exact methods: devised to provide a provably optimal solution
- Heuristic methods: provides “good” solution with no optimality guarantee

Consider also:

- Sometimes the exact solution is mandatory
- Always try to devise an exact approach first!

When do we use heuristics?

- Toformulate an exact modelis unpractical orimpossible
- Need forjust “good” solution using “reasonable” resources”
o Limited amount of time to provide a solution (running time)
= E.g., quick scenario evaluation in interactive Decision Support Systems
= E.g.,realtime system/NP-Hard problems
o Limited amount of computational resources (memory, CPUs, hardware)
o Limited amount of time to develop an effective solution
= E.g., off-the-shelf solvers cannot effectively solve an available formulation)
o Limited amount of economic resources to develop a solution algorithm
= E.g., costsfor analysers and developers) or run it (e.g., costs for solver
licenses, new hw etc.)
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- Just estimates of the problem parameters are available (and we do not want to deal with
uncertainty using robust or stochastic optimization...)

Warning: NP-hard problem =+ heuristics!

In some cases it’s better to spend resources in order to get to better data or create models in order
complex problems - so, mathematical models make their jobs in order to take better solutions.

The following is one (among many) possible classifications for the problems:

- Specific heuristics
o Exploits unique features of the problem at hand
o Mayencode the current “manual” solution, good practice
o May be “the first reasonable algorithm that come to our mind”

- General heuristic approaches (algorithmic “templates”)
o Constructive heuristics
o Simplified exact procedures
o Meta-heuristics (algorithmic improvement schemes)
= They define components and interactions so to find good solutions
o Approximation algorithms

=  Approximation guarantee to have a specific distance factor from a solution
o Hyper-heuristics

= They operate at the boundary between Operations Research and Artificial
Intelligence so to find solution linking pieces of other algorithms

Some papers of reference here (to give a better representation):

- C.Blum and A. Roli, “Metaheuristics in Combinatorial Optimization: Overview and Conceptual
Comparison”, ACM Computer Surveys 35:3, 2003 (p. 268-308) K. Sorensen — here

- “Metaheuristics —the metaphor exposed”, International Transactions in Operational Research
(22), 2015 (p. 3-18) —here

Let’s go into deeper detail of the general approaches.

4.2 CONSTRUCTIVE HEURISTICS

These heuristics look for a solution from the empty one, going to iteratively add elements to it, trying to
limit back-tracking. The criterion by which the element to be added is chosen is called the expansion
criterion. The simplest heuristic is the greedy heuristic, which at each step chooses the element that
is best at that time. In particular:

- Build a solution only using input data incrementally selecting a subset of alternatives
o Startfrom an empty solution, adding iteratively elements with no backtracking
- Expansion criterion (no backtracking)
o Make local optimal choices at each step, which may not lead to globally optimal
solutions
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4.3 GREEDY ALGORITHMS

Between constructive heuristics, let’s consider first the greedy algorithms:

They adopt local expansion criterion, because the choice is made considering the best for the current
state of the solution.

The generic scheme is:
1. Initialize solution S.
2. For each choice to be made:

a) Make the best choice for the current context, considering the
constraints of the problem.

One needs a criterion to add the most feasible element at a time, using a greedy (myopic) vision given
on what we have at the moment, using a strongly local criterion: things will be added iteratively
according to the need, applying sorting rules according to dispatching rules.

- They are particularly easy to implement
- Time of computation is reduced, and they are used in blocks for more complex algorithms

In some cases, greedy algorithms exploit an ordering of elements (dispatching rule): the elements that
define the solution are considered in that order and eventually inserted into the solution.

- Generally, the sorting criteria used involve associating each choice with a “score” that
indicates the goodness of the move, trying to reward at each iteration the move that appears
to be the most promising

- The score information can be computed once and for all at the beginning of execution based
on the input data (pre-sorting)

- Often, however, the same heuristic algorithm provides better results if the element sorting
criterion is dynamically updated to consider the choices made previously; of course, the
continuous updating of element scores will result in an increase in the computation time
required by the algorithm itself

To try to get different, and possibly better, solutions using the same procedure, one can iterate the
algorithm using a different sorting each time, obtained by a randomization of the dispatching rule.

- Forexample, the score could be corrected with a random component, so as to have the
possibility of choosing, at each step, not the best element, but a “good enough” element: in
this way one could make the algorithm less myopic and save some elements for later steps,
when the choices become more critical. Or, at each step, one could consider the random
choice among the best n residual elements

Generally, greedy algorithms are of the primal type, that is, they make choices that always respect all
constraints (starting from an empty solution). There are, however, also dual versions of such
algorithms, applied to problems for which it may be difficult to determine a feasible solution: these
start from unfeasible solutions and try to construct a feasible solution, making choices aimed at
reducing the degree of unfeasibility, trying not to make the value of the solution much worse.
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4.4 EXACT METHOD ALGORITHMS AND SIMPLIFICATION OF EXACT PROCEDURES

Other things to report:

- Exact method algorithms exploit the LP model of the problem and use continuous relaxation in
order to define score and expand the solution, so to find the best solution at each expansion

iteration, when fixed the element variables
o Generally, the computational time is greater than greedy algorithms, with greater
solution quality given they are globally optimal

- Simplification of exact procedures, taking decisions with greedy criteria but using an exact
schema, for example after a certain time limit of a number of nodes

o Avariant seen here is the beam search

We want to start from “simple” examples, like the knapsack problem. An example of this is the
classical knapsack algorithm (KP 0/1), in you need to pack a set of items, with given values and sizes

(such as weights or volumes), into a container with a maximum capacity (aka “can we put it or not?”).

[Knapsack Problem 0/1 (KP-0/1)]
Given: Item j with w; and p;; capacity W;
Determine: loadable subset of items that maximizes total profit.

Greedy rules would be:

- Selecting the smallest weight
- Selecting the higher profits

An algorithm would be this one - privileging higher-profit and lower-weighted values:

© Sort object according to ascending &.
Wi
j

O Initialize: S:=0, W:= W, z:=0
Q forj=1,...,ndo
o if (w; < W) then

(5] S =Su{j} W::V_V—mg, z:=z+pj.
Q endif
@ endfor

The order is based on a score assigned to each element, which is static (dispatching rule). The logic of
the algorithm is this one:

21

1. Sort items in descending order of ”
j

2. Initialize: S:= @, remaining_capacity := W
3. For each item j in sorted order:
if wj < remaining_capacity then
S:==S5 U {j}

remaining_capacity := remaining_capacity — w;j
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Note how the expansion criterion is static (the ratio) and can be evaluated once and for all at the
beginning of the algorithm.

Now, we are exploring the Set Covering Problem (SCP), which selects a minimum cost combination of
subsets whose union equals M (covers all elements in M). Here, the solution is built with a subset ata

time. T
[SetCovering Problem (SCP @%
Given: set M; set(M)C 2M; ¢;, J € M; U{{.

Determine: a min cost combination of subsets in M whose union is M

In the set covering problem, a subsetis “good” if it has low cost and covers many elements (among
those yet uncovered). Thus, the basic idea of the greedy algorithm is to compute the score of each
subset notyetincluded in the solution as a function of cost and the number of additional elements
covered.

We select subsets between M and calligraphic M (subset) so to select the best order (no matter if
ascending or descending):
[SetCovering Proglem (SCP, o=

Given: set M: set M C2M: ¢, J e M;
Determine: a min cost combination of subsets in M whose union is M

/7:/ 7,2/3,4,(%>

The score assigned to a subset not only depends on the size, but it strictly depends on the iterations.
This is the greedy algorithm for KP 0/1:

Q Initialize: S:=0, M:=0, z:=0

Q@ if M = M (<« all elements are covered), STOP;

et : <y

© compute the set J ¢ S minimizing the ratio ————;

| J\M|

Q set S:=SU{J}, M:=MuUJ, z:=z+c¢; and go to 2.

@ Dynamic dispatching rule

Note how, in this case, score evaluation is dynamic, being related not only to the subset under
consideration, but also to the choices previously made according to the expansion criterion, which
changes the number of additional elements covered.
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Question: Is it better to have a static/dynamic dispatching rule?

Answer: The choice between static and dynamic dispatching rules is a tradeoff between efficiency and

solution quality.

Static rules are evaluated once upfront, making them faster and simpler but less adaptive
Dynamic rules update before each choice, providing better solutions by considering the partial
solution state, but require more computation time

Choose static for speed and simplicity, or dynamic for better quality when computational
resources allow for this choice

The best choice ultimately depends on your specific requirements for solution quality versus
computational efficiency

In general:

Better to use dynamic rules - they are efficient, but they may be costly from an efficiency point
of view, since it exploits partial solutions (up to that point)

We have no current view of what will happen in the future — can we build a “look-ahead”
dispatching rule?

One way would be to integrate into heuristics some exact methods. For example, let’s consider a
greedy algorithm for the SCP through an exact method, where we use continuous relaxation:

min Z GIXy

JeM

st. . x; =1 VieM
JeM:ied
x; €{0,1} VJeM

O Initialize: S:=0, M:=0, z:=0
QifM=M (< all elements are covered), STOP;

© solve linear programming relaxation of SCP (with x; =1 (J € §),
and let x* be the corresponding optimal solution;

Q let J = argmaxx7;
ngs 7

Q set S:=SU{J}, M:=MUJ, z:=z+ ¢, and go to 2.

The key idea is about how we use LP relaxation to score/choose the next element:

1.

Instead of forcing x; to be binary (0 or 1), we relax it to be continuous (0 < x; < 1). This makes
the problem much easier and faster to solve

When we solve this relaxed LP:

- Already selected elements (in set S) have x; = 1 fixed
- Allother variables can take any value between 0 and 1
- This gives us fractional values for unselected elements

The scoring strategy:

- The LP solution x™* gives us fractional values for each unselected element

- We choose the element with highest fractional value (argmax xjf‘)
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- Thisvalue indicates how "important” the LP solver thinks that element is for an optimal
solution

4. The intuition:

- Elements with higher x* values are considered more valuable by the LP solver
- These values consider the global problem structure
- It's like the LP is giving us a hint about which elements would be good to select next

e s SF @:@
min Z Cyxy

JeEM

s.t. Z x; >1 VYieM
JeM:ied

XJ—::
M =D

relo 1

x; €{0,1} YIeM

@ Initialize: S:=0, M:=0, z:=0
@ if M= M (< all elements are covered), STOP;

@ solve linear programming rt)axation of SCP (with x; =1 (J € S),
and let x* be the corresponding optimal solution;

Q let J = argmaxx7;
ngs J

Q@setS:=SU{J}, M:=MUJ, z:=z+c; and go to 2.

Even with simple constructive heuristics, understanding sorting and everything is important in fact.
This last algorithm, most likely and in general instance conditions, works better.

An idea would be integrating exact solution methods inside of heuristics, specifically:

- Expansion criterion based on solving a sub-problem to optimality (once or at each expansion)

- Example: best (locally optimal!) element to add by MILP

- Example: locally good element to add by LP relaxation of MILP

- Normally longer running times but better final solution

- “Less greedy”: solving the sub-problem involves all (remaining) decisions variables (global
optimality)

Remark: having a mathematical model is useful, even if the model does not directly solve the
problem.

We talk about random constructive heuristics algorithms:

@ The expansion criterion can be randomized

» random swap of consecutive elements in a static sorting

» random choice (uniform or weighted) among the next k candidate
elements

» adding a random component to the score

> etc.

@ Can be iterated to obtain different solutions (e.g. up to a time limit):
“easy” way to improve over the first solution

The randomic choice is not totally random but may be useful in order to make the computation faster.
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An idea can be to simplify exact procedures, for example:

- Run CPLEX on a MILP model for a limited amount of time
- Simplify an enumeration scheme
o Selectonly a limited subset of alternatives, e.g., Beam Search

A constructive simplification might be the following one, considering a search tree for the knapsack
problem, considering 6 items, doing binary branching (b = 2): at each node, we branch by setting a
variable to 0 or 1. This is a way to implement a bruteforce approach.

The tree exploration works level by level:

1. AtlLevel1:branchesonx; (0 —1)
2. Atlevel 2: branchesonx, (0 —1)
3. Each subsequent level fixes another variable

At each level, only the k = 2 best nodes are kept for further exploration, based on their evaluation
values. This reduces the search space compared to full enumeration while potentially maintaining
satisfactory solution quality.

The following is the complete example (basically, it’s a bruteforce approach with a search tree; “put
Yes or put No”, up to the last level) — with a few items it’s tractable, otherwise it can become
exponential on running time to explore all of the leaves.

n = 6 items; binary branching (b =2); k = 2;

(any reasonable) evaluation of nodes

root

=0

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

LEVEL 6

A heuristic will try to explore a part of this tree, since otherwise it would be an exponential explosion;
like a beam, we would like to explore a part of this tree, exploring at a time the best nodes, evaluating
the nodes and selecting only one part, so to stabilize the nodes chosen (constants X size of the
problem).

Written by Gabriel R.



51 MeMoCO Simple (for real)

é“-%ecﬂf_&.ﬂ
45)‘3 a/o

® ® © 6

Q

@“’* - & - - - P2l

At each level, the heuristic might select nodes to be developed or not — the boxed value 48 at the
bottom right indicates a feasible solution was found on that branch. Other branches were either
pruned (N.A.) or had worse evaluations.

— binary branching (b = 2): at tree level i, we fix either to 0 or 1 variable x;,

. . Yoo .
according to decreasing L] (in the examples it corresponds to 1...6). The
wj

number of levels is equal to the number of variables (6 in this case).
- k=2

— the heuristic algorithm described above is used to provide the evaluation of
each node (O(n) complexity, once the variable are initially fixed, at the root
node, once for all), taking into account the value fixed at previous levels. We
thus evaluate at each node a lower bound (feasible solution) and choose, at
each level, the k = 2 nodes with higher lower bound.

With this algorithm, we consider each position and examine the N sequences so far, so to consider all
of the probabilities and combinations of the positions - this is known to be a fast algorithm, since it
does a systematic expansion of the most promising nodes within a constrained set.

e Partial breath-first visit ot the enumeration tree
compute a score for each node (likelihood it leads to an optimal leave)
at each level select the k best-score nodes and branch on them
@ Let: n levels, b branches per node, k beam size
n - k nodes in the final tree
n- b k score evaluations

@ Let: t time for single node evaluation, T overall time limite
i
n-b-t

e Variant (with some backtrack): recovery beam search

tune k =
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This variant with higher guarantees of finding good solutions is known as beam search, consisting of
simplifying the branch-and-bound algorithm through a partial breadth-first visit to the tree. For each
node, all b potential children nodes are generated but, for each level, at most k child nodes are
developed (i.e., branched on) (where k is a parameter to be calibrated according to the computational
time available).

- The choice of the k subproblems to be developed is usually made by associating with each
potential child node a prior assessment of the goodness of the solutions contained in the
corresponding subtree (e.g., but not limited to, the bound, or a quick assessment of a possible
solution of the subtree through a greedy completion procedure, or their weighted sum etc.)
and taking the k most promising child nodes of the current level current one

- Inthis way combinatorial explosion is avoided: at each level k nodes will be kept (at most) and
the branch-and-bound tree is reduced to a bundle (=beam) of n — k nodes (if n is the number
of levels in the tree) thus guaranteeing polynomial complexity, if polynomial is the procedure
for evaluating each node. Height of the tree remains infact polynomial

Note that if n is the number of levels in the tree (related to the size of the problem), b is the number of
child nodes of the generic node and k the size of the bundle will be evaluated O(n * k * b) nodes.
Eventually there will be at most k leaf nodes corresponding to solutions from which the best one is
chosen.

- Fromthe above formula, fixing k, the number of nodes is known, and being able to estimate
the time required to perform the evaluation of a node, one can predetermine the time total
execution time of a beam search

- Or, if the maximum amount of time available is known, it is possible to size k to the maximum
value that will allow the search for all nodes to be completed in the predetermined time

In its basic form, the beam search technique does not involve backtracking (it is not possible to
backtrack once choices of nodes to be developed have been made): for this reason, it has been
included in this section on constructive heuristics, although the fact that the various components
have to be defined specifically for each problem within a well-defined framework makes this
technique comparable to a metaheuristic.

- Indeed, the boundary (as we have already mentioned) is blurred and, for beam search, there
are variants, such as recovery beam search where one handles backtracking, allowing, if one

realizes that some subtree at a certain level is not “promising,” to go back to an earlier level
With this method, nodes which are computed are known in advance.
The example shows a knapsack problem with:

- n = 6variables (tree levels)

- b = 2 branches per node (binary variables)
-k = 2 bestnodes kept per level

- Node scores are based on relaxation values

- Infeasible/dominated solutions marked as N.A.
- Solution found at bottom-right with value 48
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The variant "recovery beam search" adds limited backtracking capability to potentially improve
solution quality while maintaining reasonable computational effort.

4.5 NEIGHBORHOOD AND LOCAL SEARCH

How to improve a solution?

- In continuous optimization: use gradient (to see the idea, look here)

o Done to compute the exact direction of improvement

o Following smooth path to the optimum, using derivatives (directions)

o Thisis not directly applicable because of the nature of the objective function
- Incombinatorial optimization: explore nearby solutions ("neighborhood")

o Moves through discrete “jumps”, checking nearby solutions

This image illustrates the concept of gradient vs. neighborhood search in optimization:

J

* A

The grid lines represent a discrete solution space X, while the curved lines show continuous paths
that would be followed by gradient-based methods. Let’s explain the key elements of this visual
example:

Red dot: Current solution s

Grid intersections: Feasible discrete solutions

Curved green lines: Continuous optimization paths (gradient)

Blue grid: Discrete solution space where neighborhood search operates

PN~

The image emphasizes that while continuous optimization can follow smooth paths (green curves),
combinatorial optimization must "jump" between discrete points on the grid through neighborhood
moves.

- The neighborhood N(s) of the red point would be nearby grid intersections, typically those
reachable through single moves in the discrete space, rather than following the continuous
curves

- Thisvisualizes why gradient methods don't work for combinatorial problems —we must explore
discrete neighbors rather than follow continuous improvement directions

The basic idea of neighborhood search is to define an initial solution (current solution) and try to
improve it by exploring an (appropriately defined) neighborhood of this solution. If the optimization on
the current solution's surroundings produces an improving solution the procedure is repeated
starting, as the current solution, from the newly determined solution.
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Let’s give a more formal definition:

Let X be a (discrete) set of feasible solutions, and consider minyex f(x):

a neighbourhood of a solution s € X is a function
N : s — N(s) that identifies a subset N(s) C X J

Remark:

- N(s) obtained by systematically applying slight changes to s
- Achange is also called move: we from from s to a neighbor solution
- The move also identifies the applied rule, i.e., the neighborhood function

Consider the problem applied here - given:

- Setofitems i with profits p; and weights w;
- Knapsack capacity (weight) W = 20
- Items:a(3,4),b(4,5),c(5,4),d(3,3),e(8,9), f(4,7) where (p;, w;) represents (profit, weight)

KPO/1, items i(p;, w;): a(3,4), b(4,5), c(5,4), d(3,3), e(8,9), f(4,7), W=20
s={a b,d} obj(s) =10

First Neighborhood N (s)

Current solution s = {a, b, d} with obj(s) = 10
N(is)={tc X|t=s+ii€ X\sort=s—Iii€s}
where:

- Xissetofallfeasible solutions
- s+ imeansaddingitemi to solutions
- s —imeansremovingitem i from solution s

Neighbors:
t, =1{b,d} obj(ty) = 7 [removed a]
t; ={a,d} obj(t;) = 6 [removed b]
tzs={a,b} obj(ts) = 7 [removedd]
ts={a,b,c,d} obj(ty) = 15 [added c]
ts ={a,b,d, e} infeasible [added e]
te ={a,b,d,f} obj(ts) = 14 [added f]
N(s)={tC X|t=s+i,ieX\sort=s—i,ic€ s (insert/remove)}
t1 ={b,d} obj(t1)=7 ta = {a,b,c,d} obj(ts) =15
t, ={a,d} obj(t) =6 ts = {a,b,d,e} infeasible

ty ={a,b} obj(t3)=7 te ={a,b,d,f} obj(ts) =14
Improving directions: from s to t; and from s to tg
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N'()={tcX|t=s+i—j,i€X,j€Es}

where s + i — j means swapping item j in s with item i notin s

Neighbors:

t; = {c,b,d}
t, = {e,b,d}
ts = {f,b,d}
ts = {a,c d}
ts = {a,e,d}
te = {a,f,d}
t; = {a,b,c}
ts = {a,b,e}
te = {a,b, f}

obj(t;) = 12 [swapped a — c]
obj(t;) = 15 [swapped a — e]
obj(t3) = 11 [swapped a = f]
obj(4) = 11 [swapped b — c]

obj(ts) = 14 [swapped b — e]
obj(ts) = 10 [swapped b = f]
obj(t7)
obj(tg)
obj(ts) = 11 [swapped d — f]

12 [swapped d - c]

15 [swapped d — e]

N(s)={tCX|t=s+i—j,i€X,j€cs (swap)}

t :{C,b,d} Obj(tl) =12

tr = {E, bd} Obj(tz) =15
t3 Z{f.b,d} Obj(tg) =11
ts ={a,c,d} obj(ts) =11
ts = {a,e,d} obj(ts) =14
t() = {3, }c d} Obj(tﬁ) = 10

t'{:{a,b.,C} f-(t'{):].
tg = {a, b, e} f-(t'{) =15
tg = {a, b, f} f(tﬁ) =1

improving directions:
all but tg

The basic idea of the meta-heuristic known as neighborhood search is the following: start from an
initial solution (current solution) x and try to improve it by exploring a suitable neighbourhood of x. If
the neighbourhood contains a solution better than x, then iterate the process considering x’ as the

new current solution.

The simplest version of the neighbourhood search is the local search (LS): the algorithm stops when
the neighbourhood of the current solution contains no improving solutions, so that the current

solution is a local optimum.
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4.6 LocAL SEARCH SCHEME

The basic Local Search (LS) scheme is the following:
Determine an initial solution x
Define a neighborhood function N in the space X of solutions
while (3 x" € N(x): f(x") < f(x)) do {
x = x'
}

return(x) (x is a local optimum*)
*Notice: "combinatorial (local) convexity” depends on x, f and on N(x)

The scheme is extremely simple and general. To obtain an algorithm for a specific problem the
following components should be specialized:

- A method to find an initial solution

- Asolution representation (model/representation), which is the base for the following elements
(which is a formulation to be used inside of the implementation)

- The application that, starting from a solution, generates the neighbourhood (moves)

- Thefunction that evaluates solutions

- Aneighbourhood exploration strategy

The "hidden components" in Local Search (LS) are crucial because they significantly impact the
algorithm's effectiveness. Each is important because of many factors:

- Quality affects the starting point of search

- Caninfluence final solution quality

- Trade-off between quick random start vs. good heuristic solution

- Affects diversification (multiple random starts) vs. intensification (good starts)

This is visible by the following:

o theapplication that, stagiing from a solution, generates the
neighbourhood (moves);

@ the function that evaluates solutions:

@ a neighbourhood exploration strategy.

1

T

X
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4.7 INITIAL SOLUTION AND SOLUTION REPRESENTATION

There are different approaches to generating initial solutions for Local Search algorithms and their
implications:

- Random choice of a solution

- From current practice — using existing solutions from real-world

- (Fast) heuristics

- Randomized heuristics

- No theoretical preference: better initial solutions may lead to worst local optima
o Starting with a high-quality solution doesn't guarantee finding the global optimum
o Could get stuck in local optima near the starting point
o May miss better solutions in other regions of the solution space

- Random or randomized + multistart
o Better exploration of solution space - different starting solutions
o Increased chance of finding global optimum
o Helps avoid getting stuck in specific regions

The easiest way to get a starting solution is to generate one randomly. Or if the problem is derived from
areal case, there may be a currently used solution that can be used as a starting point.

Another idea is to start with a good solution obtained by fast heuristics.

- Thereis no theoretically better choice anyway, so there is a trade-off between the time
invested in finding a good starting solution or the time invested in finding the optimum.

- Of course, there is always the risk of getting stuck in a local maximum

- Ifarandomly generated starting solution is chosen, it is possible to repeat the local search
several times in order to find multiple local optimum solutions, in the hope that one of them
will be better than the others or a global optimum solution

The solution representation encodes the features of the solutions as to provide the “concrete”
support for the operations that allow us exploring the solution space. As we will see, different solution
representations may be adopted for the same problem, which influences the design of the remaining
LS elements.

s

For the Knapsack Problem (KP 0/1), possible 4} P df? ZI e
representations include: { 2.4, &f = {72 S‘)r
1. Listof loaded items vector g Ll =
2. Characteristic binary vector indicating selected <712 LSGC?7 P> €
items edfz_{jé'ié‘?—?—c?;, -

3. Ordered sequence of items
Decoding may be needed to translate the representation into an actual solution. For KP 0/1:

- Listand vector representations have immediate decoding
- Forordered sequences, items are loaded in the given order until the knapsack is full
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The way in which the solution is represented is important because it affects the definition of the
neighborhood and the shape of the search space.

- Byrepresenting the solution we do not mean using a vector rather than a list, but at a more
abstract level

- Forexample, for the backpack problem, it is possible to represent the solution with a binary
vector, where a 1 indicates that the item was placed in the backpack, or as a stack of objects
representing the various items

- Depending on the encoding, decoding may also be necessary to obtain a result that people
can understand (e.g., pop/push operations for K/P 0-1)

4.8 NEIGHBORHOOD REPRESENTATION: STARTING SOLUTION AND REPRESENTATION

The neighborhood function N defines how to perturb a solution x to generate its set of neighbor
solutions N (x).

A neighborhood function N : x — N(x) defines the elements of a solution
x and a modifying action (or move) that perturbs x

Given a solution x (neighbourhood centre), we apply a move to each
element of x and we obtain a set of neighbour solutions (neighborhood) J

For example, adding one item in the backpack or removing another. Typically, these are slight
changes, so the size of the neighborhood is small to make it quick to evaluate.

- However, there is a trade-off, because as the neighborhood size increases the probability of
converging to a local optimum decreases, but the complexity/time for generation/evaluation
increases

- Therefore, the complexity of the evaluation algorithm must also be considered, because it
must be run on all solutions in the neighborhood

There are key properties for the neighborhood to be considered in its design:

- Neighbourhood size: number of neighbor solutions
- Evaluation complexity: time to evaluate one neighbor (incremental is faster)
- Neighbourhood strength: reach good local optima (may depend on convexity of space)
o Good chance of producing excellent local solutions, this is because if you have a
strong neighborhood itis easier to achieve a good solution even from a bad one
- Connection: any solution reachable by a move sequence
o Given two feasible solutions it is always possible to find a sequence of moves that
allows you to move from one solution to the other — done at priori

For KP/0-1, the addition neighborhood is clearly disjointed (reachable solutions are only those that
contain the objects in the starting solution).

The second neighborhood is also disjointed (only solutions with as many objects in the knapsack as
the starting solution are reachable). A connected neighborhood would be one that includes two types
of moves: addition of an object in the knapsack and elimination of an object from the knapsack (note,
however, that, in a local search context, elimination moves would never be selected because they are
non-enhancing).
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The following one is an example for the KP 0-1:

e Insertion neighbourhood has O(n) size; Swap neigh. has O(n?) size
o A stronger neigh. by allowing also double-swap moves, size O(n*)
@ An insertion or a swap move can be incrementally evaluated in O(1)

Overall neigh. complexity: insertion O(n), swap O(n?)

Insertion neigh. is not connected

Swap neigh. is not connected

Insertion+removing neigh. is connected (in theory, see solution
evaluation...)

For the KP problem we can use three representations:

- Alistwith elements included in the backpack

- A Boolean characteristic vector with as many values as there are total elements
(conventionally n). A 1 indicates that the element is in the backpack (0 otherwise)

- Astack with the ordered sequence of element elements

Considering the addition of an element and the swap as moves, we do not get connected
neighborhoods, because it may be that to move from one solution to a better one we need to make a
not-so-great move.

But there is also a practical problem, implementing insertion/swap in a list or vector is simple, but on
the stack (or ordered list), the implementation may be more complex and in some cases may not be
possible.

The way the neighbourhood is devised and designed strongly depends on the way solutions are
represented — solution representation is important!

- Allthe moves we have previously described for KP-0/1 comes from the first representation
(insert or remove are list operations). The same moves can be easily adapted to the second
representation (characteristic vector): flipping a 0 to 1 (insertion), flipping a 1 to 0 (removing),
swapping a 0 and a 1 (pairwise swap)

- Thethird representation (ordered item list) yield different move definitions, since a neighbour
solution is given by a different order. A move may be swapping the position of two items in the
sequence: for example, if n = 7 and the centre solutionis1 -2 -3 —-4—-5—-6—7,
neighbour solutionsarel — 6 — 3 — 4 — 5 — 2 — 7(swap2and6)or5—2—-3—-4 —
1—-6—7(swap1land5)

- The size of this neighbourhood is 0(n?) and it is connected (with respect to maximal solutions,
that is, the ones where no further items can be included preserving feasibility)
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That is summarized by the following image:

@ Insertion, swapping, removing moves are based on list or vector
representation!

e Difficult to implement (and imagine) them on the ordered-sequence
representation

@ For the ordered-sequence representation, moves that perturb the
order are more natural, e.g., pairwise interchange:
» from1-2-3-4-5-6-7
tol—-6—-—3—4—-5—2—7 (pairwise interchange 2 and 6)
or5—2—-3—-4—-1-6—7 (pairwise interchange 1 and 5)
or ...
size is O(n?), connected (with respect to maximal solutions)
neigh. evaluation in O(n) (no fully-incremental evaluation)
overall complexity O(n?)
(remark: only maximal solutions are visited)

yyvyy

The insertion neighborhood is not connected, as it only reaches solutions with more items than the
center. The swap neighborhood is also not connected, as the number of items cannot change.

A connected neighborhood is insertion+removing, as any subset can be reached by adding/removing
items. However, removing moves would not improve the objective in a straightforward LS
implementation (see solution evaluation).

o Insertion neighbourhood has O(n) size; Swap neigh. has O(n?) size

A stronger neigh. by allowing also double-swap moves, size O(n*)

L]

An insertion or a swap move can be incrementally evaluated in O(1)

Overall neigh. complexity: insertion O(n), swap O(n?)

@ Insertion neigh. or Swap neigh. are not connected.
Insertion+removing neigh. is connected

4.9 COMPLEXITY AND EVALUATION FUNCTION OF SOLUTIONS

Another important aspect to consider in the design of the neighborhood is related to the efficiency of
its exploration, that is, the evaluation of the solutions that are part of it.

- Infact, one of the factors that determine the success of techniques based on neighborhood
search is the ability to evaluate many solutions very quickly

- Thetime to explore a neighborhood depends not only, as we have seen, on the size, but also
on the computational complexity of evaluating a single neighborhood

In this regard, it is always important to consider the possibility of incremental evaluation that takes
advantage of the information from the neighborhood center.

- The possibility of efficient incremental evaluation is related to the degree of perturbation
introduced by a move: for this reason, there is a tendency to favor neighborhoods determined
by simple moves (often less strong but quick to evaluate), as opposed to moves that result in
significant perturbations (neighborhoods that are stronger but, in addition to having larger
sizes, require less efficient evaluation)

- Intotal, neighborhood complexity is given by the product of neighborhood size times the
evaluation complexity of each neighbor
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The solution evaluation function is used to compare neighbors to the center solution (and between
each other) — normally, the objective function — basically, how “good” they are.

In KP-0/1, the evaluation function may:

e May include some extra-feature (e.g. combined by means of a
weighted sum) to identify “more promising” solutions
» In KP-0/1, "prefer” solutions with larger residual capacity

F(X) = Ziex pi + € (W = Ziex i)

e May include penalty terms (e.g. infeasibility level to allow visiting
infeasible solutions)
» In KP-0/1, let X be the subset of loaded items
F(X)=aY o pi — Bmax {0,y w; — W} (a, > 0)
it potentially activates “removing” move in a connected
“insertion+removing” neighbourhood

4.10 EXPLORING STRATEGIES AND LS APPLICATIONTO TSP

The basic LS scheme depicted above makes the search go on if the neighbourhood of the current
solution contains an improving solution. The choice of which improving neighbour solution to select is
not unique and depends on the exploration strategy. The common alternatives for exploration are:

- Firstimprovement: as soon as the first improving neighbour is generated, it is selected as the

next current solution
o Notice that the final results (e.g., the local minimum found, or the running times for a

single move) depend on the order in which neighbour solutions are explored

o Inorderto reduce running times, we may adopt a heuristic order, to give priorities to
the moves that are more likely to yield an improvement

o Arandom order may be used instead, so that different repetitions of the local search
(starting from the same initial solution) may lead to different local optima

- Granularization: apply a filter (deterministic rules, a pre-trained classifier) to exclude part of
the neighbours (machine learning)

- Steepest descent or best improvement: all the neighbourhood is explored and evaluated, and

the next move is determined by the best one

Alternative techniques are possible, some of which, to incorporate randomness into the algorithm,
determine the k neighborhood solutions that guarantee the highest improvements and randomly
choose one of these solutions as the next current solution.

- Repeated execution of such an implementation of local search allows finding excellent

different locales from which the best one is chosen
- Another possibility is to store some of the best unvisited neighbors and use them, at the end of
the first descent, as the initial solutions of a new local search that could lead to excellent

different locales
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Consider a classical problem: the Traveling Salesman Problem (TSP), which considers an Hamiltonian

cycle — cycle that visits each vertex exactly once. Up to a reasonable size, solving the problem is
feasible, but sometimes we need approximate solutions to get heuristics and solve a specific problem
(since itis NP-Hard, otherwise, algorithms have an exponential complexity).

Sample application to TSP

[Traveling Salesman Problem (TSP)]
Given: a (complete) graph G(V, A); cost cjj, (i.j) € A;
Determine: a min cost hamiltonian cycle.

Prototype application: optimal tour of a sales(wo)man to visit all (her)his clients

@ First question: is LS justified? Exact approaches exists, not suitable
for large instances and small running times. Notice that TSP is
NP-Hard

@ Notation and assumptions:
G=(V,A G is complete |V[=n

cost ¢jj # ¢ji (asymmetric case) or ¢ = ¢jj (symmetric case)
@ Define all the elements of LS

TSP is an NP-hard problem, and as early as 100 nodes, CPLEX is struggling to find a solution optimal
with the exact approach (note: important for Assignment 1!)

In addition to starting from a random solution, obtained by considering a random sequence of visiting
graph nodes, there are several constructive heuristics for TSP, among which we mention the
following.

The Nearest Neighbor (NN) (also, Nearest Node in slides) heuristic provides a straightforward way to

construct an initial solution:

- Startfrom arandom node i

- lteratively select the closest unvisited node until all nodes are visited
- Complete the cycle by returning to i,

- Complexity is 0(n?)

The NN heuristic is:

- Simple to implement but not amazingly effective
- Greedy in nature, which can be problematic since the last choices become critical
- Can be improved by:

o Running multiple times with different starting nodes i

o Randomizing the node selection in Step 2
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After the initial solution, we improve things by heuristics and local search:

@ select node iy & V; cost =0, Cycle =< ig =, i = fp.

@ select j = argjem.'gds{cg} OCh)

@ set Cycle = Cycle & {j}; cost = cost + ¢;; o(1)

Q seti= O("‘L) n_{
@ if still nodes to be visited, go to 2 ':'(J—) OCL-}
@ Cycle = Cycle @ {iy}; cost = cost + ¢z, T Cw )

or better): simple but not effective (too greedy, last choices
are critical)

@ repeat with different iy

e randomize Step 2 )

The algorithm is simple and of low complexity (improvable with particular data structures) but has

mediocre performance.

- Inparticular, the loop degrades as it is constructed, since the initial choices tend to leave out
the most disadvantaged nodes, not considering that one must return to the starting node

- Totrytoimprove performance, with still poor effects, or to obtain different starting solutions
for the local search, one could run the algorithm n times, starting from the n different nodes in
the graph (choosing iy at step 1); or one could randomize the choice of the nearest node at
each step (choosing, at step 2 randomly among the k nodes closest to i)

The complexity increases as long as we continue augmenting the number of nodes, creating larger
instances of the problem - nevertheless, extremely fast and good idea for an initial solution.

@ select node ip € V; cost =0, Cycle = {ig}, i=io. () (1)
selec@ arg min {¢j} OCVL)

jeV\Cycle
Q set Cycle = Cycle U {j}; cost = cost +cj (D (:/,.) dﬂj

@seti=j Ocz) -
if still nodes to be visited, go to 2 o)

@ Cycle = Cycle U {iy}; cost = cost + cjj, <C 2.0

The use of Local Search for TSP is justified because:

- TSPis NP-Hard
- Exact approaches exist but are not suitable for:
o Largeinstances
o Smallrunning time requirements
- LS provides a good trade-off between solution quality and computational effort
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Another heuristic is to Best Insertion: find two closest nodes and then calculate the insertion cost
between each consecutive pair, choosing the best inserting it in the best position —insertion
algorithms add new points between existing points on a tour as it grows:

LS for TSP: Best Insertion

© Choose the nearest nodes / and j: C = i—j— i, cost = ¢j + ¢ji
elect the nod@: arg min;e v c{Cir + G — ¢ - i, consecutive in C}
© modify C by inserting r between nodes iangqj-minimizing
e tei—gj
@ if still nodes to be visited, go to 2.
o O(n?): rather effective

@ may randomize initial pair and/or r selection

To consider that the path must close, this heuristic starts from a loop of length two and inserts, at
each step, a node into the cycle, with an expansion criterion that selects the node nearest to/farther
away from the cycle. We first start on the Nearest Insertion.

The initial cycle is obtained by selecting the i nodes i and j such that ¢;; is the minimum/maximum:
the initial cost is then Cij + Cji- At each iteration, if C is the set of nodes in the current cycle, we select
the node r = argmingey\c{ck;:j € C}.

The Farthest Insertion works better (keeping the complexity to circa O(n?) since the unlucky choices
or the farthest actually are effective (since cycle is balanced and not degraded after latest insertions).
The goal is not to choose the minimum cost; if one gives probability to the farthest nodes and then
construct to make choices starting from safe nodes.

LS for TSP: Nearest/Farthest Insertion

@ Choose the two nearest/farthest nodes i and j an build the initial
cycle C=i—j—1i
Q@ select the node r = arg min, e\ ¢ / max, e\ c{c;j 1 j € C}

© modify C by inserting r between pairs of consecutive nodes i and j in
the current cycle such that ¢ + ¢,j — ¢jj is minimized

@ if still nodes to be visited, go to 2.

V.

e O(n?): rather effective (farthest version better, more balanced cycles)

e may randomize initial pair and/or r selection
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Consider also that we are not talking about Christofides algorithm, which works only from a
theoretical point of view (have a read here if you don’t know). Here, you have no performance
guarantee since this works specifically in the worst case with a complexity of O(n*). In the worst case

the tour is no longer than %the length of the optimum tour (twice the cost of the optimal solution) — so,

both heuristics and exact methods with smaller complexity work better than this one.
Have a look here in case if you are interested in many other heuristics and different representations.

For the TSP representation of the solution, we have separate ways:

- Arcrepresentation: arcs in the solution, e.g., as a binary adjacency matrix, containing the
binary matrix N X N containing the arcs being traversed (1 if M(i, ) is part of the solution)

- Adjacency representation: a vector of n elements between 1 and n (representing nodes),
v[i] reports the node to be visited after node i

- Path representation: ordered sequence of the n nodes (a solution is a node permutation!)

Each position of the array is devoted to a specific node and in the representation we represent the
sequences and respective position; the disadvantage comes from the fact positions do not represent
information, but the order of visiting. Of course, it’s easy and intuitive, that’s why it is used generally.

@ arc representation: arcs in the solution, e.g. as a binary adjacency
matrix *~

o adjacency representation: a vector of n elements between 1 and n
(representing nodes), v[i] reports the node to be visited after node |

@ path representation: ordered sequence of the n nodes (a solution is
a node permutation!)

[g[q|z[ﬁf(3(;(i {
12345637
?

3245374 €3

A good representation might be using arcs, considering for example the representation here.

Continuing, we will mainly refer to path representation, which corresponds to the most natural way of
representing the TSP solution and, together with adjacency representation, enjoys the property that
any vector of nodes (without repetitions) represents an admissible solution (while, in the first case,
not all matrices represent a tour!). Decoding the path representation is straightforward: just construct
the loop following the order given in the vector.

What is the minimal way to modify the solution (removing/adding arcs), what is the way to rebuild the
solution to construct an Hamiltonian cycle? Rebuild the same graph, removing X arcs and add the
corresponding X arcs.

- Classically, the neighborhood for the TSP is obtained by exchanging k arcs in the solution with
k arcs not belonging to the solution

- Inorderto obtain feasible solutions, it is necessary that the arcs in the solution are not
consecutive in the starting cycle; moreover, once the k arcs to be eliminated are defined, one
can explicitly define the k arcs to be introduced into the solution to form a new cycle
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- This type of neighborhood is called k-opt, and was introduced by Lin-Kernighan in 1973

The k-opt neighborhood structure for TSP involves:

- Remove k edges from current tour
- Reconnect the tour with k new edges to form a valid cycle
- Must maintain tour validity

Examples shown:

- 2-opt: Removes 2 edges and reconnects with 2 new edges
- 3-opt: Removes 3 edges and reconnects with 3 new edges

Implementation details:

- For 2-opt: Effectively reverses a subsequence between cut points
- Original: (1,2,3,4,5,6,7,8,1)

- After 2-opt: (1,2,6,5,4,3,7,8,1)

- After 3-opt: (1,2,7,6,3,4,5,8,1)

Properties:

- Neighborhood size: 0(n*)

-k = 2 gives superior results for most instances

-k = 3 provides marginal improvements

-k > 3rarely worth computational cost

- Consider there at most 6 ways to change and construct Hamiltonian cycles

This forms the basis for effective local search improvements for TSP solutions.

- The k-exchange moves can be defined directly as operations on the vector of path
representation

- Forexample, the 2-opt neighborhood is obtained by defining any pair (i, j) of nodes and
reversing the sub-sequence of nodes between i and j (substring reversal): in the example, i =
3,j = 6 and the sequence 3,4, 5, 6 is replaced by 6, 5, 4, 3; another possible neighbor is
obtained fori = 3 andj = 7, leading to the sequence (1,2,7,6,5,4,3,8,1) and soon

2 2
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For TSP, 2-opt moves involves reversing a substring between two cut points, considering all of the
possible pairs and moves, incrementally evaluating all of the possible combinations of nodes
(constant time, since removing/adding takes the same time) — the same happens for the 3-opt, for
each triplet of non-consecutive arcs.

About the complexity of the evaluation of each neighbor, itis a matter of subtracting from the value of
the central solution the cost of the k eliminated arcs and adding the cost of the k added arcs, which
can be done in constant time 0(1): we thus have an extremely efficientincremental evaluation, at the
only additional “cost” of storing, for the center of the neighborhood, the value of the solution.

@ In terms of path representation, 2-opt is a substring reversal

@ Example: < 1,2,3,4,5,6,7,8,1 > — < 1,2,6,5,4,3,7,8,1 >

@ 2-opt size: %2(”72) = 0(n?)

o k-opt size: O(n*)

o Neighbour evaluation: incremental for the symmetric case, O(1)
[}

2-opt move evaluation (symmetric case): reversing sequence between
i and j in the sequence < 1...hi,...,j,1,...;1>

Chew = Cold — Chi — Cji + Chj + Cil

@ which k? kK = 2 good, k = 3 fair improvement, k = 4 little
improvement

The removal operation takes constant time since we are subtracting from time to time the arcs. What
is the best choice of the parameter “k”?

-k = 2: Good balance of improvement vs complexity
-k = 3: Moderate additional improvement but higher complexity 0(n®)
-k = 4: Minimal improvement for computational cost 0(n*)

No specific reason to adopt special choices, since we can simply use objective function (total cycle
cost), with no need for special evaluation functions or penalties/modifications:

- Neighbours evaluated by the objective function (cost of the related cycle) — take first better
solution found
- Steepest descent (or firstimprovement) — evaluate all neighbors

As implied by the previous arguments, solutions are evaluated with the mere objective function: in
effect, each permutation of nodes is an eligible solution sufficiently differentiated, in terms of cost,
from its other neighbors, and it is not considered useful to introduce penalties or other components.
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4.11 NEIGHBORHOOD SEARCH/TRAJECTORY METHODS

Local search is a good trade-off between simplicity and efficiency, but there is a risk that it gets stuck
on a local optimum. A strategy is therefore needed to dodge these excellent ones. Note that if the
function to be optimized is convex, there is no such problem because every local optimum is also
global. Typically this does not occur in optimization problems. Some ideas might be to do random
restarts, change the neighborhood size, randomize exploration, or perform backtracks. But these
ways only allow restarts once embedded.

We have already mentioned implementation tricks that try to escape from the local optimum, among
which we mention, for summary:

- Random Muiltistart: this is the simplest technique, which consists of repeating the local search
with different initial solutions, randomly generated or with randomized heuristics
- Dynamic Neighborhood Modification (since the definition of local minimum also depends on
the neighborhood): for example, in TSP, we start with a 2-opt neighborhood and, if no
improving 2-opt neighbors are found, we switch to a 3-opt neighborhood
o Advanced techniques such as Variable Neighborhood Descent (VND) or Variable
Neighborhood Search (which are actually much more complex and are outside the
scope of this course) are based on this observation
- Randomize the exploration strategy by randomly choosing among k neighboring enhancers
- Introduce backtrack mechanisms, based on the memory of some feasible alternative choices
of neighbors that can be considered later, once a local minimum is reached by other means

An alternative approach is trajectory methods, which continue the exploration of the solution space

even after ending up in a local optimum. This requires admitting moves that lead to a worse solution.
With this strategy there is a risk of ending up in a loop, using an already explored solution.

@ Neighbourhood search or Trajectory methods: a walk trough the

solution space, recording the best visited solution _

Accepting non-improving moves can be a way to try to escape the local optimum, in order to avoid
loops. Here are the key strategies for avoiding loops in trajectory-based search:

To avoid this is possible:

- Accept only better solutions
o Forexample: Hill Climbing

- Randomly explore space without exploiting information about the problem
o Forexample: Simulated Annealing

- Keeping track of solutions already been encountered, exploiting the problem structure
o Forexample: Tabu Search

Note that finishing several times on the same solution may be acceptable. However, in this case it is
necessary to avoid choosing the same previously chosen neighbor again.
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4.12 TABU SEARCH

Tabu search (TS) (created by Fred Glover in 1989) is a metaheuristic that relies on memory to avoid

cycling by preventing certain "tabu" moves, which happens maintaining a tabu list for forbidden and
allowed solutions, determining how much they will stay forbidden (the already visited solutions).

ATabu List, a list containing the last t solutions visited T'(k) = {x*~1,x*=2, ..., x*~t}.

- Bydoing so atiteration k, cycles of length < t are avoided, where t is a parameter that needs
to be calibrated. The limitation given by the parameter t is there to limit memory consumption
and to make the search on the list faster. Neighborhood generation is now done by a function
N(x, k) that also takes iteration into account to avoid tabu

- Toincrease efficiency and take up less space, one may choose to keep track of the moves
made (or some other feature) instead of the solution, because it may be that evaluating the
equality of two solutions is too expensive or because a single solution requires too much
memory

- Thereis a disadvantage to keeping track of moves, however, because solutions that have not
yet been visited may be excluded (also seeing if a neighbor is in the tabu list)

A simple example can clarify the basic idea of tabu search:

- Suppose we are in a local minimum x and y € N(x) is the best neighbor (even if worse than x)
according to the neighborhood N used

- If we agree to move to y, at the next iteration, an improving solution in the neighborhood N(y)
will surely be x and it is quite likely that x is chosen as the next current solution

- This triggers a cycle between x and y, from which one could escape simply by remembering
that x is an already visited solution and preventing (making “tabu”) its selection

If we accept non-improving moves, we are in trouble since we might get stuck in a loop at any given
moment! The local optimum can be the attracting point.

We are inside of a discrete space, which represents coordinates like the following:

12 ~ 42 - JQ“M ¥ -10~ 42_
43~4lo e 4'4 E!*é 43 6Dl b 6

*~3 ~42-40—41 —40~43
| | { | -
40 41 vff}@m - 4241 t“5“73’&0t°

| [ f / I I
AL -42-43-43-41 -3 - 6

S 4
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If we start from 13, we look at the neighbors and we choose 10; the third solution is the minimum with
respectto 10, which is 11 and continuing like that. The complete path is the following one.

*Example: tabu list length
12 ~43 ~ 4 ~ M AGGINA 2
: ___4‘3 flé:l>ro,c{0b 6

-3 42 4044 -4

ll ‘-—-
40 44 13- ‘L% 1l - 48 A t:bﬁp'ea’(:‘
/ { 1 / 1] s

4)_ 42 -43 =43~ 41—3‘6

Itis an innovative idea to accept non-improving moves, but in the local search scheme that we have,
we eventually are going to loop between good solutions. Above, this is represented by the above pink

cycle. Local search has local optimum as point of stopping, but this is too simple; it will loop
somehow, depending on the inputs.

If | store inside of the tabu list all of the solutions visited, it is impossible to loop; at some point the
tabu list length will be so long that it becomes impossible to compare all of the viable solutions.

Let’s consider a second example with the length of the tabu list with length 5, with the following
representation (leftis the beginning one, right one deletes a previous node since length of listis 5):

**Example: re-visiting solutions

19 - 42 ~ Ji{‘—’b{@’fo 4L 42 43. JQ'—/{f @@41

43-4lo »1'7_ fq 3 g 43 '43-40 42_ 4(, g 8 43 €6 Qe g 6
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| i ) i ! i o
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Of course, storing solutions means coming back to those nodes, but the tabu list memorizes them in
some way (not coming back to nodes, but performing the same moves with a different tabu list). The
best solution going on with the walk, the best solution is 3; if all solutions were stored, everything

would have been “tabu”, so keeping a shorter list is definitely useful to perform again the same moves
in an ordered way.
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It’s important also to verify the membership of a certain neighbor in the tabu list, which depends from
the length of the list and the complexity of the comparison to check.

- Let us clarify this point by considering the case of the TSP with neighborhood 2-opt: instead of
storing the last t Hamiltonian cycles visited, one can store t pairs of arcs subject to deletion in
the last selected moves: if we choose to delete the arcs (i, j) and (h, l) and, consequently, add
the arcs (i, h) and (j, I), these arcs will not be exchanged for the next t moves. Or one could
decide to make all moves involving nodes i, j, h and [ tabu

- Indeed, in this context, to cycle does not simply mean to return to a certain solution, but to
cyclically retrace a certain trajectory in the search space. Thus, even if one were to return to a
solution already visited, the important thing is to continue on a different path, which is
possible if one inhibits moves (or salient features) recently considered and therefore
contained in the tabu list

For example, in solving the TSP using 2-opt moves, completing what said above (which reverse parts
of the tour):

- Instead of storing complete tours in the Tabu List, we store the pairs of arcs that were added
by recent moves

- This prevents immediately reversing those moves, which would undo progress

- However, if reversing a tabu move would create a tour shorter than any found so far, the
aspiration criterion allows it

Another reason for limiting the memory of visited solutions is that, if one makes many neighbors tabu
(think particularly of the case of prohibition on features of solutions), after a certain number of steps
one risks greatly depleting the “legal” neighborhood, preventing proper exploration of solutions.

- Forthisreason, the length t of the tabu list (called tabu tenure) is a critical parameter that
needs to be sized appropriately:
o Too low = makes the tabu list too short and the risk of cycling remains
o Too high =the tabu listis too long and as seen, there is a risk of constraining the search
too much (losing potentially good neighbors) even though by now one has moved far
enough away from a certain solution or local minimum to make it unlikely to cycle

This is where aspiration criteria come in. They can be defined that if they are met they will surpass the

tabu rule and let the solution visit anyway. For example, as aspiration criteria one can use “the tabu
solution has the best objective function value among all those visited so far”, overruling them.

- They provide a way to override the Tabu List restrictions when a promising solution is found

- The most common aspiration criterion is allowing a tabu move if it leads to a solution better
than the best found so far. This makes intuitive sense — even if a move is tabu, if it leads to the
best solution yet, we should allow it

There are different stopping criteria, since the one used by local search (find improving neighbors) is

not applicable anymore. It’s a combination of (all parameters with * should be calibrated):

- Maximum number of iterations, or maximum time limit *
- Maximum number of NOT (locally or globally) IMPROVING iterations *
- Asolution is found satisfying an optimality or “acceptability” certificate, if available...
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- Empty neighbourhood and no overruling (no aspiration criteria to apply)
o Perhapstistoo long (too high as parameter — length is the list size)
o Perhaps visit non-feasible solutions (e.g., COP - Constrained Optimization Problem)
with many constraints): modifying evaluation function, alternate dual/primal search

The last criterion is peculiar to TS and could occur for strongly constrained problems, where the
number of admissible neighbors is very small. The presence of the additional restriction of the tabu
list makes the connection characteristics of the neighbors even more critical, and therefore
techniques that allow one to proceed in the exploration of infeasible solutions and then return to
feasible solutions (one speaks in these cases of granular tabu search).

The basic TS scheme is the best improvement scheme (steepest descent) —this means it evaluates
ALL neighbors (both non-tabu and those satisfying aspiration criteria) and selects the best one as the
next solution. In this case, the tabu search is considered reactive, since next exploration depends on
the ones done before.

- Incontrast, a firstimprovement strategy would modify this approach significantly. Instead
of evaluating every neighbor, it would accept the first neighbor it finds that improves the
current solution

- The search would stop examining neighbors as soon as an improving solution is found

Determine an initial solution x; k := 0, T(k) =0, x* = x;
repeat
let y = arg best({f(y),y € N(x,k)}U
{y € N(x) \ N(x, k) | y satisfies aspiration})
compute T(k+ 1) from T(k) by inserting y (or move x — y,
or information) and, if | T(k)| = t, removing the elder solutio
(or move or information)
if f(y) better than f(x*) then let x* :=y
x =y, k++
until (stopping criteria)
return (x*).

Same basic elements as LS (+ tabu list, aspiration, stop)

Point is: we store information only to avoid specific moves.
Having defined the essential ingredients, we schematize the basic tabu search as follows:

1. Generate aninitial solution x and setk := 0,T(k) = @, x *= x

2. Generate the neighborhood N(x)

3. Choose the solution y that optimizes the evaluation criterion f(y) among all solutions in
N(x, k) oramong solutions in N(x) \ N(x, k) that satisfy some aspiration criterion

4. Obtain T(k + 1) from T (k) by fitting y (either the move x — y or some characteristic of y) and,
if [T (k)| = t, eliminating the “oldest” solution (or move or feature)

5. If f(y)isbetterthan f(x*), placex™ := y

6. If a stopping criterion is not met, place k = k + 1,x = y and return to step 2

7. Return (x*)
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The scheme is very simple and follows local search, modified with the additional ingredients such as
tabu list, aspiration criteria, and stopping criteria. Therefore, in addition to what has been said above
for the specific components of tabu search, all the expedients design arrangements already
discussed for local search about:

- Determination of an initial solution

- Representation of the solution

- Definition of the neighborhood
o With relative complexity and the possibility of incremental evaluation

- Solution evaluation function (which could be different from the objective function f
o Asevidenced by the use of “f in the presented scheme

Regarding the exploration strategies note how, as a base, a steepest descent strategy is used,
although nothing prohibits, to speed up the search, the adoption of first improvement strategies. In
addition, the possible presence of aspiration criteria necessitates the evaluation of all neighbors,
even tabu ones, which could be avoided (to increase efficiency) if such criteria were not used.

The professor shows an example of code on TS, on which different input sizes are tested:

- We only have an empirical analysis to conduct to understand the exact number and it has to
be conducted on different instances
- Theright size strictly depends on the size of the problem

After a while, in metaheuristics it is useful to start from somewhere else and multistart again.

The basic scheme described above allows the development of algorithms that generally provide good
performance. These can be further improved, crucially for applications, by systematically extending
the use of exploration memory to alternate phases of search intensification and diversification.

- Intensification consists of deep exploration of certain areas of the search space that seem
promising: for example, we focus on solutions that possess certain characteristics, or on
solutions that are relatively “similar” to each other (left image)

- Diversification, on the other hand, consists of trying to identify little-visited areas of the
solutions space, with the aim of identifying promising new areas on which to intensify
research: e.g., the selection of solutions with different characteristics from the best current
solution (right image)

Js
AT
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The alternating phases of intensification and diversification are intended to orient the search
efficiently toward finding different local minima and, therefore, of globally better solutions.
Intensification and diversification can be applied to all metaheuristics, and their exhaustive exposition
is beyond the scope of our purposes: we limit ourselves here to providing some ideas on how these
can be implemented In the particular context of tabu search.

The balance between these phases is crucial, since after a while you might not find any better
solutions:

- Too much intensification: Gets stuck in local optima
- Too much diversification: Random walk without finding good solutions
- Right balance: Thoroughly explores areas while maintaining ability to escape when needed

This principle extends beyond Tabu Search to other metaheuristics (better seen up next):

- Genetic Algorithms: Population diversity vs. selective pressure
- Simulated Annealing: Temperature control (high = diversification, low = intensification)
- Ant Colony: Pheromone concentration vs. evaporation rates

Intensification and diversification are general principle
that can be applied to any metaheuristics (not only to TS)

Possible diversification techniques include the following:

- Use, within the same Tabu Search algorithm, different contours. E.g. example, for TSP, if a
stopping criterion occurs with a 2-opt neighborhood, the search can continue with a 3-opt
neighborhood, until an improving solution is found.

o Ingeneral, several neighborhoods can be defined that allow for solutions that are more
or less distant (dissimilar) from the center solution, and priority criteria are established
in the exploration of these neighborhoods

o Each neighborhood is associated with a tabu list, the management of which is
completely independent of that of the other tabu lists

- Modify the neighborhood evaluation function, rewarding solutions that deviate, in terms of
features, from the current one

- Atthe end of an intensification step, consider the best obtained solution x and construct a
new starting solution that is as different from x (complementary) as possible, so as to search,
through further intensification, for a better solution starting from a point in a different area of
the search space

- A more refined way (and consistent with the principles of tabu search, which is based on the
systematic use of memory) is the introduction of a long-term memory term, which collects
information about the exploration history

o Indeed, the tabu list, in its basic definition, represents a short-term memory (recency-
based memory, one stores a few recent moves), used to direct local search in order to
make the probability of cycling negligible following acceptance of deteriorating moves
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o Through long-term memory, new and different directions can be given to local search

o Forexample, statistics can be collected on the features that are more or less explored
(because they are more or less present in the solutions gradually selected in
constructing the trajectory in the search space) and based on these statistics,
incentivize (e.g., by rewarding in the evaluation function) the selection of solutions
carrying features little explored

A simple way to achieve alternating intensification and diversification phases in tabu search contexts
is to dynamically manage the length of the tabu list (parameter t, tabu tenure), which, therefore, no
longer has the mere function of avoiding the cycles potentially triggered by the acceptance of
worsening moves. In particular, in the intensification phases, t is held at low values (the minimum ¢,
value that prevents cycling).

- Ifthe best available solution x* is not updated for a given number of iterations, the value of
t increases, while it decreases again (to the limiting value t,) when x™* is updated

- Notethat as t increases, the number of solutions, moves or features increase tabu and, as a
result, there is a tendency to accept solutions that are sufficiently different from the last
explored and, ultimately, to move quickly to areas of the space of the solutions other than the
current one, thus achieving diversification

Many metaheuristics are inspired by nature: have a read to “Metaheuristics—the metaphor exposed”,
a paper present here: https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12001

Consider the following example:

- Inthe Graph Coloring problem, we want to assign colors to the vertices of a graph such that no
two adjacent vertices have the same color (using k colors — k-coloring)
- The goalis often to minimize the total number of colors used while ensuring a valid coloring

Given an undirected graph G = (N, E), the problem of coloring of a graph is to determine the color
number of G, denoted by y(G), i.e., the minimum number of colors required to color G and a relative
assignment of colors to each vertex (typical application is the coloring of maps).

- First, itis necessary to define the basic components of local search: we focus here on the
representation of the solution, the definition of the neighborhood and the evaluation function
(a starting solution could trivially be obtained by coloring all nodes with different colors,
although there are several possible heuristics)

- Infact, as we shall see, the problem is rather constrained and presents problems inherentin
the connection of neighborhoods (already defined as the possibility, given a starting solution,
of reaching any solution through a succession of moves), which is particularly relevant in the
case of applying a tabu search (since the tabu list tends to impoverish neighborhoods even
further)
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We want to understand how to move inside of this graph, changing the color of one node at a time
(make a walk to find local minimums). Keep in mind the logic of the tabu search explores the search
space by moving from one solution to another one inside of the “neighborhood” - here, it includes all
colorings that can be obtained by changing the color of a single node.

Example: Tabu Search for Graph Coloring

@ move: change the color of one node at a time (no new color). 12 neighbours:
VVGRVG, GVGRVG, RRGRVG, RGGRVG, RVRRVG etc. none feasible!

@ objective function to evaluate: little variations (plateau!)

f that penalizes non-feasibilities, includes (weighted sum) other features, but ... J

The solution representation consists of a vector of length n = ||, with an element for each vertex
carrying the color assigned to that vertex. Some examples are given in Figure 3, with a 3-color
(objective function f = 3) and a 2-coloring (f = 2). Note how not all color assignments are
permissible, since they may violate constraints on the coloring of adjacent vertices.

- Afirst definition of neighborhood could be derived from the moves that change the color of one
node at a time, trying not to increase the number of colors used in the center solution of the
neighborhood: this involves generating a neighbor for each node and for each of the colors
used by other nodes in the center coloring

- Inthe example, starting from the 3-coloring in previous figure, you would get 2 neighbors for
each node, for a total of 12 neighbors: VWVGRVG, GVGRVG, RRGRVG, RGGRVG, RVRRVG etc.

- Already from this small example it can be seen that none of the neighbors are eligible, making
evident the poorly connected characteristics of the defined neighborhood. We therefore have
two alternatives: change neighbors or admit the transition for ineligible solutions

Before choosing between the two alternatives, let us consider some observations about the function
of evaluating the solutions.

- The natural choice for the solution evaluation function would be the objective function to be
minimized, that is, the number of colors used by the proposed coloring. In fact, the color
number of a graph tends to be low and, in any case, not much lower than the value of the
starting solution that can be obtained by heuristics

- Itfollows that many feasible solutions use the same number of colors and, therefore, the
search space is extremely flat, that is, many neighboring solutions, regardless of the chosen
neighborhood, have the same value of the objective function, configuring plateaus —
snapshots capturing all relevant information about where the algorithm currently stands
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- Consequently, the tabu search will follow a fairly random trajectory in the search space, since
avery large number of neighbors represent equally desirable directions, thus risking visiting
many equivalent solutions before finding, just as randomly, a solution with a lower number of
colors (if a stopping criterion does not intervene first)

Given a k-coloring, search for a (k — 1)-coloring

When faced with a graph coloring problem, we start with valid k-coloring and aim to find a solution
using k — 1 colors. Instead of directly searching for this reduced coloring, we transform the problem
to minimize constraint violations.

- The process begins by eliminating one color, reassigning its vertices to the remaining colors.
This creates an invalid coloring that we then refine. To evaluate solutions, we count edges
where both endpoints share the same color (monochromatic edges). A solution becomes valid
when no monochromatic edges remain

- The search moves through the solution space by changing vertex colors one at a time, focusing
specifically on vertices involved in monochromatic edges. To prevent cycling, we maintain a
tabu list of recent vertex-color combinations that cannot be immediately reversed

- When we eliminate all monochromatic edges, we've found a valid coloring with k — 1 colors.

At this point, we can attempt to reduce the number of colors further by repeating the process
with the new solution

4.13 SIMULATED ANNEALING

Simulated Annealing (SA) is a metaheuristic search algorithm that works by drawing an analogy to the
physical annealing process.

FIRE BRICKS

When metals are heated and then cooled slowly (annealing _ _
—here avisual example), their atoms initially have high . -
energy and move freely, then gradually settle into a low-

energy crystalline structure. If cooled properly, this results in &\\ o
a strong, stable configuration (cooling schedule). This e _'w'_ I
physical process inspired the optimization algorithm. (\f 3 3

The algorithm works by iteratively exploring solutions while allowing occasional "worse" moves, with
their acceptance probability controlled by a temperature parameter. As the temperature decreases,
the algorithm becomes more selective about accepting worse solutions.

The search process follows these steps:

- First, it starts with an initial solution and temperature
o Ateachiteration, it generates a random neighbor solution. If this neighbor is better
than the current best solution, it's automatically accepted and becomes the new best
o Ifit's worse, it may still be accepted with a probability that depends on two factors:
how much worse the solution is (the "Loss") and the current temperature T (k)
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- The probability of accepting a worse solution is calculated using p = exp(— %

o This means that small deteriorations and/or high temperatures lead to higher
acceptance probabilities

o Asthetemperature decreases according to a cooling schedule, the algorithm
becomes less likely to accept worse solutions, gradually focusing on improving moves

- The cooling schedule is crucial for the algorithm's performance
o Ittypically starts with a high temperature where worse solutions are readily accepted,
allowing broad exploration of the solution space
o The temperature then gradually decreases, making the algorithm more selective and
focusing on local improvements
o The schedule is defined by parameters including the initial temperature, number of
iterations at each temperature, temperature decrease rate, and minimum temperature

The following is the SA scheme:

Metaphor: annealing process of, e.g., metals.
Alternate warming/cooling to obtain “optimal” molecular structure

search scheme (one possible):

Determine an initial solution x
intialize: best solution x* < x and iteration k =0
repeat

k+—k+1

generate a (random) neighbour y

if y is better than x*, then x* + y

Loss = max{0, f(y) — f(x)} (minimization problems)?

L
accept y with probability p = exp| — T?f))

if accepted, x + y
until (no further neighbours of x, or max trials)
return x*

2L oss = max{0, f(x) — f(y)} (maximization problems)

The parameter T (k) represents the temperature of the process; the higher it is, the more likely it is to
accept worse solutions. As the execution progresses the temperature drops. At the theoretical level it
is possible to prove that under certain assumptions (a very long cooling time) this method succeeds in
converging to a global optimum. But on a practical level there are meta-heuristics that work better.

4.14 POPULATION-BASED HEURISTICS

There are metaheuristics that, on the other hand, maintain a population of solutions, that is, a set of
several solutions, and, at each iteration, combine these solutions together to obtain a new
population.

- Theidea s that, through appropriate recombination operators, better solutions can be
obtained than current ones

- These methods are called population based and, in many cases, are inspired by natural
mechanisms, assuming a tendency of nature to organize itself into structures that are
“optimized”
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Population-based meta-heuristic algorithms are a class of approaches that search near-optimal
solutions by maintaining a set of candidate solutions and using population characteristics to guide the
search iteratively.

In recent years there have been many studies in this area, moreover with strong interdisciplinary
connotations that have led to the definition of different optimization paradigms, for example
Evolutionary Computation, Scatter Search e path relinking, Ant Colony Optimization, Swarm
Optimization etc. — see “Metaheuristics —the metaphor exposed”.

- The basic principles of genetic algorithms were established by Holland in 1975, and were
inspired by Darwin's evolutionary theories, published in 1859. Paraphrasing (with much
license) these theories, we can see individuals, in their different evolutionary stages, as
“solutions” that are increasingly adapted to the environment in which they live and liken the
evolution of a population of individuals to some process of “optimization”

- Individuals (parents) combine with each other (reproduction) to generate new and different
individuals (offspring) that become part of subsequent populations (generations);
participation in reproductive processes is more likely for those individuals most adapted to the
environment, according to the principles of “natural” selection (natural selection) and
“survival of the fittest” (survival of the fittest)

- Genetic algorithms attempt to simulate the evolutionary process by matching to each
individual a solution, and to the level of adaptation to the environment a fitness, that is, a
quantitative measure of the quality of the solution itself, thus trying to make solutions of
increasingly high quality survive

This is the base of the scatter search, so to get a better population at each step, which becomes on
average better in the solution space and find better solutions:

Summarizing some other methods here, which are inspired by biology, so to replace each time
different solutions from an optimization point of view. There are different ways to do so:

- Scatter search maintains a small, diverse reference set of high-quality solutions. It creates
novel solutions by systematically combining subsets of the reference solutions and improving
them with local search

- Antcolony optimization is based on how ants use pheromone trails to find efficient routes.
Artificial ants construct solutions guided by pheromone information from past searches
spread by ants and heuristic information about good decisions. Pheromone is updated to
reinforce promising solution components
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- Particle swarm optimization moves a swarm of particles through the search space. Particles
are attracted to their own best solution and the swarm's best overall. Velocity and position
updates balance exploring new areas with exploiting good regions found so far

For the above techniques consider the summary present in the paper — Sorensen’s “Metaheuristics — the metaphor exposed”

4.15 GENETIC ALGORITHMS: SCHEMA, ENCODING, OPERATORS

At its heart, a genetic algorithm frames optimization as an evolutionary process, like how biological
organisms evolve and adapt over generations. The idea is that, by mimicking the key drivers of natural
evolution (selection pressure, recombination of genetic material, and random mutation), we can
"evolve" initially random solutions into highly optimized ones tailored to our problem (survival of the
fittest — so, the stronger/better survive).

Genetic Algorithms [Hollande, 1975]

Metaphore: biological evolution as an optimization process:

Survival of the fittest o~ Optimization
Individual an Solution
Chromosome s Encoding
Fitness «~  QObjective function

- To start, we have to present the potential solutions to our problem in a way that allows the
evolutionary mechanisms to operate. Typically this means encoding solutions as
"chromosomes" - essentially strings of genes (bits, humbers, or symbols) that capture the key
variables or decisions.

- Thischromosomal encoding is like the DNA of our candidate solutions. Just as biological DNA
encodes the traits of an organism, our artificial chromosomes encode the parameters of a
solution. This mapping between the encoding and solution space is a key design step

Genetic algorithms start with an initial population of solutions (the individuals in biological systems)
and iteratively evolve them.

- Ateachiteration, the solutions are evaluated (fitness, level of adaptation to the environment)
and, based on this evaluation, a few of them are selected (selection principle), favoring the
solutions (parents) with higher fitness (survival of the fittest)

- The selected solutions are recombined (reproduction) to generate new solutions (offspring)
that tend to transmit the (good) characteristics of the parent solutions into subsequent
generations

The process is articulated as follows:

1. Coding of solutions of the specific problem
2. Creation of an initial set of solutions (initial population)
3. Repeat, until a stopping criterion is met
1. Select pairs (or groups) of solutions (parent)
2. Recombine parents by generating new solutions (offspring)
3. Evaluates the fitness of the new solutions
4. Replace the population, using the new solutions
4. Returnthe best generated solution
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As with all metaheuristics, this is a very general scheme that must be specialized for different
problems. The starting point is the encoding of the solutions based on which the different genetic
operators must be defined, mainly:

Methods for generating an appropriate set of solutions from the initial population
Function that evaluates the fitness of each solution

Recombination operators

Generational transition operators

Genetic operators are based on a genetic representation of the solution that encodes the
characteristics of a solution.

This representation corresponds to the chromosome of biological individuals, to the point that
we often speak indifferently of solution, individual or chromosome. Still continuing with the
analogy, each chromosome is obtained as a sequence (string) of genes

Each gene is usually associated with a decision variable of the problem and assumes one of
the possible values for that variable: depending on the different values actually assumed by
the different genes, a different chromosome is obtained and, therefore, a different solution

To go from the chromosome to the solution, the following a decoding is required (which could
be immediate) to get a solution in the COP

The following are different representations examples:

KP/0-1 problem. Binary encoding can be used, associating each object with an order number
from 1 ton (number of objects) and using a gene for each object that can take the values 0 or
1. Decoding isimmediate: gene i is worth 1 if and only if object i is in the knapsack. An
example of a chromosome forn = 10 is as follows (1,4,5,9 in the knapsack):

[1[ofofrJtfofojof1]o]

TSP problem. If n is the number of cities, we use n genes that can take on, each, avalue
associated with a city. The gene at position i indicates the city to be visited at position i in the
Hamiltonian cycle. The chromosome is thus a string (sequence) of cities whose decoding is
immediate, directly indicating the order of visitation, the permutation of cities (corresponds to
path representation). An example with 10 cities encoded from 0 to 9 is as follows:

(3/2]6]1]8[0]4]7[1]5]

which indicates the Hamiltoniancycle3 - 2 - 6 -1 >8 - 0 >4 >7 - 1-5

A job scheduling problem. They are given n jobs to executed on m machines. Each job consists
of an ordered sequence of k tasks.

o Taskj ofjobiisto be executed on a given machine, committing it continuously and
exclusively for a time ¢;;

o Itisfixed the order of execution of the tasks of the same job, and each task must wait
until the previous task is finished. It is desired to determine the order of execution of
different tasks on different machines so as to minimize the completion time of the jobs

o The problem is a generalization of the newspaper reading problem presented in the
first part of the course: each boy corresponds to a job, each newspaper to a machine,
and a boy's reading of a newspaper corresponds to a task.
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o One possible encoding uses a sequence of n X k genes. Each gene can take values
between 1 and n. For example: let there be a problem with 4 jobs, each with 3 tasks to
be executed on machines A, B and C. The sequence of tasks and completion times are
given in the following table.

Job

B wWwN =

One possible chromosome is as follows:

Solution Encoding: gene = job ; chromosome = n * m genes
[4]2[1[1]3]4]2]3]1]2[3]4]

Note how there is no need to indicate the number of tasks in the chromosome, the sequence of tasks
being fixed in the same job.

- Inthis case, decoding is not straightforward and requires the use of a heuristic, for example,
the following one, of linear complexity: run through the sequence of genes and let i be the job
indicated by the current gene; consider the first task j of job i not yet considered and schedule
it on the corresponding machine as soon as possible (the machine must be free, and the task
previous task terminated)

- Inpractice, the order of genes indicates the priority of each task on the machines (which, in
fact, is the decision variable of the problem)

- Thevalue of the objective function is obtained by considering the time when the last task ends.
In accordance with this heuristic, the previous chromosome corresponds to the solution
shown in the Gantt diagram which has 21 as value of the o.f.

Solution Decoding: sequence of genes gives the priority of jobs on
machines, a greedy procedure determines the task starting times

[T [
B|2] 1 | 3] 4
Al 1 | 4 [ 2 |3
| \ | >
5

0
Each element of the solution (decision variable) becomes a gene, so to be used inside of the COP
(Combinatorial Optimization Problem).

- Encoding is important and affects following design steps (like solution representation in
neighbourhood search)

- Decoding to transform a chromosome (or individual) into a solution of the COP (in the cases
above it is straightforward)

All of these algorithms have genetic operators, in order to make these mechanisms work. We need a
lot of individuals, generated in a random way, in order to have an initial population diversified enough

to have arich genetic heritage:

- To accelerate the general convergence of the method and not simply leave to chance the task
of discovering some good features that we would like to include in the solution, one can
introduce into the initial population some solutions generated with heuristics (constructive or
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a fast local search) possibly randomized, to obtain a variety of good individuals with several
good features

- ltisimportant, however, that the number of such solutions be limited, so as not to affect too
much the characteristics of the solutions that will be generated in subsequent iterations,
causing them to converge, yes quickly, but toward individuals that resemble the starting
individuals (obtaining, probably, some local minima) preventing the exploration of individuals
with different and, perhaps, better ones

4.16 FITNESS FUNCTION AND GENETIC OPERATORS

Itis important that the initial set be as diverse as possible and can be generated using other
randomized meta-heuristics. The focus on diversification is very important.

- Thefitness function is import to give a quantitative measure of the fitness (idoneita — being
suitable) of individuals guides the processes of selection of individuals, so that, from
generation to generation, it is tending to make "survive" individuals with greater fitness, thus
passing from one generation to another their genetic makeup and therefore characteristics

- Since we are interested in obtaining optimal values of the objective function, we usually link
the fitness function to the value of the objective function (or to its inverse measure for
minimum problems)

For these reasons, we may want to use diverse variants of the o.f. so penalize non-feasible solutions,
similar to the current optimum, too much distant from the current optimum, etc.

Selection should give a greater chance to the best solutions (fittest), but also the worst ones must
have the possibility of being chosen, so as to avoid too fast convergence (prematurely!) — because
they might contain good features!

- If only the "best" individuals were selected, the algorithm could converge prematurely towards
good local points, because after a few iterations all the individuals would tend to be similar to
the best individuals in the initial population, preventing the possibility of discovering
individuals with different and, perhaps, better characteristics

- Forthisreason, selection is again based on probabilistic basis: individuals with a healthy
fitness have a higher probability of being selected for subsequent recombinations

Once this principle is established, there are several ways to achieve it, for example:

- Mode 1: one parent pair (or generally a group of one/more individuals) is selected at a time
- Mode 2: a subset of the current population (mating pool) is selected on fitness basis and the
individuals in this subset will be used (fished) by recombination operators
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The first method to achieve fitness-driven selection is the Monte Carlo method, whereby the
probability of selecting an individual is simply proportional to his or her fitness score:

@ p;: probability of selecting individual /;  f;: fitness of i

In general, compute p; such that the higher f;, the higher p;

@ Montecarlo: p; is proportional to f;

N
pi="f/ Z fi ~ f: fitness of i
k=1

In this way:

- Especially when combined with the first selection method mentioned, one could excessively
privilege the best individuals, especially in the presence of one or a few superindividuals with a
fitness value much higher than that of the others

- Suchindividuals tend to be selected very frequently, generating so-called offspring similar to
them and, again, in a few iterations the population could converge towards individuals not too
dissimilar from superindividuals (local minimum)

The literature suggests various methods to overcome this disadvantage, including:

- Linearranking: individuals are sorted by increasing fitness and selected in proportion to their
position (ranking) in the order.
o This cancels out the effect of fitness values, which could be very different from each
other, while only the position of each other is considered
o More precisely, if g; is the position of the individual in the system, one has
20’,‘
N(N + 1)
- n-tournament: in order to select one individual, first select a small subset of n individuals
uniformly in the population, then select the best individual in the subset

pi = [ = constant - g; (linear in ;) |

The recombination operators (crossover) act on one or more individuals generating one or more
children that "resemble" their parents: they are therefore individuals different from their parents, but

which combine their characteristics.

- Usually, the number of parents is greater than or equal to two and often exactly two, in analogy

with most natural reproductive processes
- Thisis precisely because, using only one individual, it would tend to make a copy of the parent,
not having the basic mechanisms to obtain different solutions

From n parents it is possible to obtain m different but similar children. One way you can generate
children is to choose genes from various parents, giving more choice to the best parent’s genes
(uniform). An alternative is to inherit genes from "block" (k-cut-point) parents.

- Uniform crossover: from two parents, a child is generated. The genes of the child are copied by
the first parent with probability p and by the second parent with probability (1 — p). Usually,
p = 0.5 is used, or calculated in a way proportional to fitness (so that the child resembles

more closely the parent with higher fitness)
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The following is an example of uniform crossover on a binary chromosome:

@ Uniform (probability depends on parent fitness)

1/o0/0f1|1|[0|O0]0O|1]0O parent 1 (fitness 8)
ojoj1|0f|1|0|1|1]|0]|1 parent 2 (fitness 5)
1/0/0|0f1f|0]j0O|1|0]O offspring

- K-cut-point crossover: it assumes that neighboring genes control related characteristics, so

that for children to preserve parental characteristics, blocks of contiguous genes must be
passed.
o In practice two parents are considered and k cut points, k = 1 (k cut-point crossover)
are defined randomly
o Thenyou get a first child by copying the blocks defined by the cut points alternately
from the first and second parent, and in a complementary way you get a second child

Below we give an example of 1 cut-point crossover:

@ k-cut-point: “adjacent genes represents correlated features”

cut point cut point
N I T 2 I T B B ¥ F parent 1
Fl+ [+ F [ F[F [+ [T+ ][+ parent 2
*P* XN+ + ]+ |+ ]+ offspring 1
++ [+ * R+ + offspring 2

Crossover provides the basic mechanism for generating new and different individuals. To make it
more effective, one can integrate it with the following steps.

A key to the evolutionary process are random mutations, which must also be encoded within the
algorithm during or immediately after the reproduction process.

- The mutation is replicated by randomly modifying some genes of the new generation. This
prevents a genetic drift, which is to say a population in which all individuals have the same
value for some genes —that’s why we introduce mutation to complement crossover

- Thisreintroduces the diversity of genes and slows down population convergence. You can
then use a larger mutation to further diversify the population

Example: possible mutation operator on a binary chromosome. Each of the n genes of a solution x is
considered separately and modified with probability p,,:

for i := 1 to n do
p = rand(0,1);
if p < p,, then x; := 1 — z; else z; := z;;

next :

The mutation operator also has the important function of counteracting the premature convergence of
the population, which is a situation in which all individuals of the population are similar to each other.

- This could easily happen, despite the attention in the selection of parents, precisely because
the crossover tends to generate children that resemble parents and, therefore, with the
progress of iterations that still favor the best individuals, they are alike
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- The same situation could occur in the initial population, although the generation of the initial
population must take care of the diversification of individuals

In any case, it is possible that no individual of the current population possesses characteristics which
are desirable for optimality of the solution. The mutation operator is then used to introduce, in a
random manner, characteristics not possessed by the current population.

- Finally, by dynamically controlling the parameters regulating mutation probability, steps of
diversification could be implemented: it is a question of introducing measures of the
population’s convergence towards certain chromosomes or gene blocks, and, above a certain
threshold, increase the probability of mutation (which usually assumes very low values, of the
order of 103), to modify the individuals generated and obtain different solution

- The mutation operator mimics the natural reproduction mechanism mutation, which occurs
during chromosome crossover, introducing more or less "lucky" characteristics in terms of
adaptation to the environment

In nature, the level of adaptation to the environment depends not only on an individual’s genetic
background but also on experiences, which allow further development of the genetic potential and
increase the ability to survive and enter into reproductive processes: for example, children are sent to
school.

- Asimilar mechanism can be simulated, complementing the recombination operators, through
a local search: starting from the generated child, a local search algorithm is applied, and the
child is replaced by the corresponding local minimum

- Inthis caseitis important to find a compromise between the quality of the solutions and the
computational effort

- Therefore, as arule, local search operators are preferred not systematically applied to all
children but only to a selection (random or fithess-driven) of few individuals in the population

The crossover and mutation operators could generate chromosomes corresponding to unacceptable
solutions (unfeasible offspring): think, trivially, of a binary-coded knapsack problem. There are several

ways to manage the presence of chromosomes corresponding to non-eligible solutions, including:

1. Rejectinfeasible solutions
1. The method is not widely used, as several attempts may be required before a qualified
chromosome can be generated (by chance)

2. Acceptthe presence of infeasible chromosomes in the population
1. As mentioned, these chromosomes may contain desirable features and used by
recombination operators, could lead to good solutions
2. Therefore, these are allowed in the population, but appropriately penalized by the
fitness function, in relation to the degree of inadmissibility

3. "Repair" the infeasible chromosomes

1. Itis aquestion of applying repair techniques, specific to each problem, which
implement a forced mutation of a chromosome, transforming it into a feasible solution

Written by Gabriel R.



87 MeMoCO Simple (for real)

Example: KP/0-1 with binary coding. Given a chromosome that has the capacity of the backpack, one
by one the objects in the reverse order of the ratio prize/weight are eliminated, until you get an eligible
chromosome that enters in the population.

4. Design of encoding and/or operators that automatically guarantee the eligibility of generated
chromosomes
1. Thisis typically the best solution, when it can be implemented without excessive
computational overhead

(In all of the following screens: genitore = parent / figlio = child)

Example: TSP. As we have seen, a possible coding is given by the positional chromosome
corresponding to the path representation. To make a chromosome feasible, it is necessary and
sufficient that all genes are all different between each other. This feature, for example, may be
destroyed by a uniform crossover or from a cut/point crossover, as seen in the following example with
10 cities:

[1[4]9[2]6[8][3][0[5]7] genitore1

[0]2[1[5[3[9]4]7[6][8] genitore2

(1[4[9]5[3[9[4|0[5][7] figlol

(0[2]1[2]6[8[3[7[6]8]  figlio2

The operator can be modified to preserve the eligibility of children, obtaining the order crossover:
defined the two cut points, child 1 (Ref. 2) returns the external parts of parent 1 (Ref. 2); the remaining
genes are obtained by copying the missing cities in the order they appear in parent 2 (Ref. 1):

(1]4]9]2][6]8]3]]0]5[7] genitore1

(0[2[1]5[3]9[4]7]6][8] genitore2

149 2[3]6[8]0]5][7] figlol

(0]2[1[4]9]3[5]7]6][8]  figlio2

Similarly, to prevent the mutation from affecting the acceptability, define the mutation by substring

reversal: two points of the sequence are randomly generated and the subsequence between the two
points is reversed (corresponds to a 2-opt move):

[1]4]9]2[6]8[3[0[5]7]
— — e
[1]4]8]6[2]9[3[0[5]7]

Note that the order crossover and inversion mutation operators can be used in all cases where the
solution is obtainable as element permutation (think of the case of KP/0-1 with encoding/decoding
obtained as an ordered sequence of objects).
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4.17 POPULATION MANAGEMENT

For each iteration, the new population is obtained by considering the previous iteration’s population
and the generated offspring. Clearly, if you simply add the new individuals, the population will grow
exponentially and therefore population management policies are needed.

- Usually, the number of individuals in the various iterations is kept constant, controlled by an N
parameter. There are no shortage of cases where this number is dynamically varied (for
example, higher to diversify the research and lower to intensify)

Once R new individuals are generated through recombination (could be R), the basic population
management policies are as follows:

- Generational replacement: R = N new individuals are generated, replacing the N old ones
(mimics biological systems)

- Steady state: unlike the previous one, it replaces only a minimal number of elements from the
previous generation, selected with fitness-driven criteria (they are tending, on a probabilistic
basis, to be replaced by the worst individuals)

- Elitism: as generational replacement, but some (few units) of the individuals with greater
fitness than the previous population are maintained

- Bestindividuals: the current population is maintained with the best N individuals among the
N + R. The selection may be deterministic or probabilistic (select, with the Montecarlo
method, N individuals among the N + R, with probability proportional to fitness)

In practice, mixed techniques are often used. In addition, as we have seen, one of the characteristics
to be preserved in the population is still sufficient diversification.

- Therefore, to avoid a premature convergence of the method, acceptance of a new individual in
the population could be made conditional on an assessment of how different this individual is
from the others, for example using the Hamming distance as a measure of diversity (it may be
useless, especially in the phases of diversification, to insert an individual into the population
whose chromosome is exactly the same as another present one)

- Inanycase, a dynamically managed "diversity" threshold could be used to implement
intensification and diversification phases

Some examples of stopping criteria might be:

- Time limit (maximum execution time)

- Maximum number of iterations (or generations)

- Number of (not improving) iterations (=generations): stops when the latest improving
individual in the o.f. was found many generations before

- Population convergence: all individuals are similar to each other (pathology: not well designed
or calibrated) — convergence measures might be similar chromosomes or low fitness variance
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4.18 OBSERVATIONS ON GENETIC ALGORITHMS: CALIBRATION & PERFORMANCE

Genetic algorithms are very general, but they fall into the category of “soft” methods, since they

cannot exploit the specific problem properties: we are not thinking about the problem to solve, but the
population to evolve. They have many parameters which impact performance and probability of their
application, since many parameters are not deterministic (= need to be calibrated).

- Onthe advantages side, genetic algorithms are remarkably versatile and robust. Their primary
strength lies in their adaptability - they require only two basic components to function: an
encoding scheme for solutions and a fitness function to evaluate them

- However, this apparent simplicity masks a significant challenge: the need for extensive
parameter calibration. They are not so controllable, since parameter calibration (=finding
standard values working on all instances of the same problem) is difficult

- These parameters include population size, mutation rates, crossover probabilities, and
selection criteria, among others

- This phase is very important but often left to the user, repeating the same runs — even the
single run is fast, the user spends much time

Genetic algorithms are in the class of weak methods or soft computing (exploit little or no knowledge
of the specific problem) — only components of the problem are encoding/decoding of the
chromosomes and fithess evaluation, but other components exploit standard implementations.

o Overstatement: complexity comes back to the designer/developer (or
the user...), that should find the optimal combination of the
parameters.

General remark: normally, the designer/developer should provide the user
with a method able to directly find the optimal combination of decision
variables. In fact, the algorithm designer/developer should also provide the
user with the parameter calibration!

A final note goes to the importance of alternating, in genetic algorithms as in all metaheuristics,
phases of intensification and diversification. These can be implemented in the different genetic
operators, as described above and summarized below by way of examples:

- Dynamically varying the probability of mutation

- Introducing appropriate penalties in fithess, to penalize or encourage (with dynamic weights,
which is and variables during iterations) individuals with certain characteristics

- Linking the likelihood of acceptance of a new individual not only to fitness, but also to his
degree of diversity from the remaining individuals

- Increasing the number of individuals subject to local research after their generation in order to
intensify it

When evaluating an optimization algorithm, several critical factors must be considered. The

implementation choices and the determination of parameters are factors that contribute to
determining the performance of an algorithm, and both must be carefully carried out.

- Simplicity of implementation, considering the resources (economic, time, personnel) available

- Computation time, and the computational efficiency of the algorithm, considering the actual
time available to find solutions

- Quality of the solutions obtained, that is the "goodness" (or effectiveness) of the algorithm
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- Algorithms with probabilistic components, the robustness or reliability of the algorithm
(reliability), the ability to produce good solutions in every run, regardless of the particular
random choices

We may have an experimental analysis, which is empirical:

1. Implementation of the algorithm

2. Selection of an appropriate set of instances (specific cases) of the problem
1. Theinstances can be real, and/or randomly generated, and/or standard benchmarks
provided by literature
2. The choice of sample depends on the purposes of the evaluation:
1. Forexample, if we want to see the behavior of the algorithm in a specific
company, it will be appropriate to consider many real instances
2. If we want to demonstrate that our algorithm is better than others in general, «it
is necessary to refer to standard benchmarks»

3. If we wantto testrobustness, it will be appropriate to include in the sample
several randomly generated instances

3. The tests are carried out, recording for each execution the evaluation of the solutions
produced and the required calculation times. In the case of parameters (almost always for
metaheuristics), it is advisable to preface a calibration step of the parameters themselves (as
described below) and use the same parameter definition for all tests.

1. Furthermore, if the algorithm is not deterministic, a reasonable number of executions
on each instance must be considered and average performance values or more
accurate statistics, including robust, evaluated

4. Comparison of the results obtained: the objective function is compared with the value of the
optimal solution (when this is known) or with bound values or with the performance of
alternative algorithms, obtaining relative measurements of goodness. Similarly, relative
estimates of the time taken for calculation can be made

This approach is always practicable and fairly simple, at least conceptually, and often the one
practiced, even if the conclusions drawn from it are not generally valid, since the analysis depends
strongly on the instances considered.

Another approach is the probabilistic analysis, which is based on the concept of the average instance

of the problem, expressed as a distribution of probability over the class of all possible instances.

- The execution time and the value of the solution are treated as random variables, the tendency
of which is studied, generally to tend the dimensions of the instances to infinity according to a
certain distribution of probability (usually uniform)

- This approach has strong theoretical foundations but is often impractical (only possible for
very simple algorithms)

- Furthermore, the extent of the real case approach is not well known, as the actual distribution
of probabilities for data may be unknown or too complicated to be treated analytically
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Another case is the worst case analysis, which is based on the determination of the maximum

deviation (absolute and relative) that the solution produced by the algorithm can have compared to
the optimal solution.

- The analysisis conducted with respect to the worst-case conditions for the algorithm. The
result obtained is very strong and of great value (algorithms with guaranteed performance),
although it may be difficult to derive it

- Also, often, the resulting indications are very pessimistic compared to the average behavior of
the algorithm

Particularly important for the exercise is the parameter calibration (or estimation), which begins with a
recognition that the process must be completed before any algorithm deployment, and the resulting
parameter settings should be applicable across all instances of the problem.

- Thisrequires a systematic approach using a sufficiently large and representative set of
problem instances, which are to be pre-deployed (always choose the same parameter
setting), to be then estimated for every instance, justifying the rule calibration so to obtain the
right settings.

- ltisto emphasize that it is a good rule to fix once and for all the values (absolute or functions),
and not adapt them to each individual instance, otherwise you risk spending time "optimizing
parameters" to optimize a single problem.

Parameter calibration techniques have recently become the subject of research, and they range from
black-box techniques to identify the parameters that guarantee the best performance (black box
optimization), to automatic adaptation of parameters (adaptivity), involving interdisciplinary domains
such as artificial intelligence. Here, however, we limit ourselves to mention the standard techniques,
simple to implement.

- ltis essentially a matter of carrying out repeated tests with different sets of parameters on a
small set of instances (test instances), so as to make the time for the tests reasonable
o The tests are evaluated with the criteria seen above, in order to choose the set of
parameters that experimentally guarantee the best performance on the test instances
o The parameters to be calibrated are generally few for metaheuristics with trajectory,
while they tend to be many for population-based metaheuristics

- Obviously, the parameters interact with each other in determining performance, so that the
difficulty of calibration grows exponentially with the number of parameters
o Inaddition, a factor that complicates calibration further and the presence of random
components, which make it more difficult to interpret the influence on performance of
a parameter variation, since the performance itself could simply depend on the case
o Forexample, the calibration of genetic algorithms could be the real critical step in their
use, while their implementation can be relatively simple
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The process follows a three-phase methodology using distinct data subsets (sufficiently large and
representative):

Select an instance subset for training (= training set)
o Computational experiments and testing different parameters configurations
Extensive runs on the training set
o Verify parameters effectiveness to ensure training instances work
Select an instance subset for validation (= validation set)
Performance analysis to select better parameters
Take interaction among parameters into account
Stochastic components make the calibration harder
Select an instance subset for test (= test set)
Runs with the estimated parameter to evaluate the “final” performance

The professor shows us an algorithm for which multiple runs obtain different values, but he says, do

not spend that much time on tuning, rather spend your mind on the actual problem resolution. You
want to obtain a specific tradeoff between complexity and time.

The parameter setting should depend on some easy feature of the instance, so look at the instance,
for example:

(993ts) value 139. (139.4) move: 16', 11

©91078461235110 4

09107846123 11580 (994ts) value 143.5 (143.5) move: 1 , 11
©511 32164871090 (995ts) value 143.5 (143.5) move: 1 , 3

03115216487 1098 (99ts) value 139.5 (139.5) move: 4 , 5

©31151264871090 (997ts) value 130.5 (130.5) move: 5 , 10
©31151107846290 (998ts) value 131.8 (131.8) move: 4 , 8

©31154871016298 (999ts) value 128.8 (128.8) move: 2 , 10
0326110784511 90 (1000ts) value 131.8 (131.8) move: 1 , 11
8911548710162 30 (100lts) value 131.8 (131.8) move: 9 , 10

FROM solution: © 16 2 11 8 96 1 3 5 7 4 @ (value : 194.4)

T0O solution: @1 627 109115 4 8 3 @ (value : 127)

in 1.43948 seconds (user time)

in 1.44 seconds (CPU time)

PS C:\Users\luigi\OneDrive\memoco\1@3.heur.ls.tsp\simulation> .\mainTS.exe .\tspl2.3.dat 5 1668.

For example, considering a tabu search, a tabu search with aspiration criteria and local search, one
gets the average performance of TSP on a specified number of values:

B14 4 fx ... (at least 10 runs per instance)
A B (o] D E F G H J K

1 |instance run LS TS | TSAC

2 val T(s) val T(s) | val T(s)

3 tsp12.1 1 68.20 0.00 68.00 0.00, 66.40' 0.00 12 nodes

4 2 66.40 0.00 66.40, 0.00 66.40 0.00 5 tenure (*)

5 3 68.20 0.00| 66.40 0.00! 66.40 0.00 120 maxiter (*)
... (at least 10 runs per instance)

6 W

7 tsp12.2 1

8 2

9 3
... (at least 10 runs per instance)

10

11 tsp12.3 1

12 2

13 3
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cs v i Jx =(C2-$B8)/$B8
A B o D E F G H
1 linstance run LS TS TSAC |
2 tsp-12  AVG 6760 000 6693 000 6640  0.00
3 tsp-60  AVG 658.10  0.00, 646.87  0.02 649.90  0.02
4
5
6
7 linstance |reference LS L) TSAC
8 [tsp-12 66.40( 1.81%] 0,00/ 0.80% 0.00/ 0.00%  0.00
9 tsp-60 631.20 4.26%]  0.00| 2.48%  0.02) 2.96%  0.02%

4.50%
4.00%
3.50%
3.00%
2.50%
2.00%
1.50%
1.00%
0.50%
0.00%

MeMoCO Simple (for real)

K L M N o P

Deviation from best known solution

m 4.26%

2.96%

LS
LRE]
TSAC

" 1.81%

= 0.80%

0.00%
tsp-12 tsp-60

There are a lot of metaphor-based algorithms; what matters the most is the results part!

- Recent literature proposed a true tsunami of “novel” metaheuristic methods, most of them

based on a metaphor of some natural or manufactured process: the behavior of any species

(bees, wasps, monkeys, apes, birds etc.), the flow of water, musicians playing together etc.
- Actually, the basic principles are often not novel, but the same as for trajectory or population
based methods

metaheuristics!

Good or new metaphores do not necessarily lead to good or new J

Golden Rule

An algorithm is good if it provides good results (validation!), and not if it
is described by a suggestive metaphor. See Sorensen, 2015

Inside the Moodle, you will find these references, to be used in general both for this part and the

second assignment:

Optional reading: papers on metaheuristics (free link from the Department network): (posted 02 Dec 2022)

e Overview (C. Blum and A. Roli)

» The metaphor exposed (K. Sérensen)

« Matheuristics: Optimization, Simulation, Control - Section 1.1 (Boschetti, Maniezzo, Roffilli, Bolufé-Rohler, Hybrid
Metaheuristics Conference

s

We’ll be coming back to the hybrid metaheuristics in the last part of the course unit (last lesson),
based on math or data driven optimization techniques (basically, the last 3-4 slides of this set).

4.19 HYBRID METAHEURISTICS

In these notes, only some of the possible metaheuristics for combinatorial optimization have been

given.

- The approach is understood in a much more flexible sense, and those proposed are only
suggestions for design choices that must be adapted and questioned according to the
particular problem to be solved.

- Inthis sense we can interpret the development of hybrid metaheuristics in recent years, which
seek to combine the merits of different algorithmic schemes.
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- Hybridization may take place at various levels and according to different schemes, and their
treatment would require a more in depth study outside the scope of the course and refer to
specific texts.

We provide below some examples of possible hybridizations, which usually give rise to more powerful
algorithmic schemes:

- One common hybridization approach combines population-based methods with trajectory
methods
o Forinstance, genetic algorithms can be used to identify promising regions of the
solution space, while local search techniques provide intensification within these
regions
o Apractical example involves using genetic algorithms to generate initial solutions that
are then explored more thoroughly using Tabu Search

- Different metaheuristics can also be combined directly
o Forexample, Tabu Search principles can be integrated with Simulated Annealing by
incorporating probabilistic acceptance criteria into the Tabu Search framework, or by
adding memory structures to Simulated Annealing algorithms

- Matheuristics represent a particularly interesting class of hybrid methods that combine
mathematical programming with heuristics.

o Thisis currently a hot research area with several promising directions. These include
construction heuristics driven by mathematical models, exact methods for exploring
large neighborhoods, and heuristics that provide bounds for exact methods

o Common frameworks in this area include Local Branching and Kernel Search

- Another emerging trend is data-driven optimization, where machine learning and artificial
intelligence techniques are integrated into optimization methods
o Thisincludes using ML for parameter tuning, Al for detecting promising search regions,
and various guided search techniques like ML-guided granular search

- Real-world applications demonstrate the effectiveness of hybrid approaches

o Forinstance, in pickup and delivery problems, two-level local search combines Tabu
Search for intensification with Variable Neighborhood Search for diversification,
enhanced by randomization

o Traffic flow management problems benefit from data-driven matheuristics that utilize
historical trajectory data and components determined through data analytics. Electric
vehicle sharing systems employ combinations of mathematical models with various
heuristic approaches, including partition heuristics and neighborhood search.

The key advantage of hybrid approaches lies in their ability to combine the strengths of different
methods while compensating for their individual weaknesses. This makes them particularly valuable
for complex real-world optimization problems where single approaches may struggle to provide
satisfactory solutions.

Side note: see here for the complete ending of this course. This subsection was quoted there just to
complete the file.
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5 LINEAR PROGRAMMING & SIMPLEX METHOD (4)

(Note: see for this part here for a more complete thing and here for the course part — both Italian)

Initially we saw how the solutions of a whole linear programming problem are located on the vertices
of the eligible region and how it was possible to find a solution in graphical way.

With the simplex method, similar considerations are made, but at an algebraic level, so that they can
be generalized to cases using more than two variables.

The simplex method is an algorithm for solving linear programming (LP) problems in standard form:

min cTx subject to: Ax < b,x >0
where:

- A € R™ " js the constraint matrix

- b € R™is the right-hand side vector
- ¢ € R"isthe costvector

- x € R" isthevariables vector

5.1 DEFINITION AND GENERAL NOTATIONS

A general mathematical programming model takes the form that follows:
min(max) f(x)
st. gi(x)=b (i=1...k)
g(x)<b (i=k+1...K)
g(x)=b (i=kK+1...m)
xeR"
X1

X2
. x= ) is a vector (column) of n REAL variables;

Xn

e f e g; are functions R" —+ R

e e R

Alinear programming model requires that both the objective function f(x) and all constraint functions
gi(x) must be linear functions of the variables. This means they take the specific form:

f e g; are linear functions of x

min(max) ci1x1 + X0 + ... + Chxn

s.t. apnxy +apxo+ ...+ amxn, = b; (.'- = 1k)
apnxi +apxo+ ...+ amxn < b; (.'-Zk-l-l,..k;)
anx1tapxot...+anx, >b (i=kK+1...m)
x eR (i=1...n)

Notice: for the moment, just CONTINUOQUS variables are considered!!!

We need different methods for models with integer or binary variables.
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For problems requiring integer or binary variables, different solution methods are needed beyond
standard linear programming techniques.

- Thelinearity requirement is significant because it allows for specialized solution methods like
the simplex algorithm. Linear functions have properties that make optimization more tractable
compared to general nonlinear functions

- However, this also means that any nonlinear relationships in the real problem must either be
approximated linearly or handled through different optimization techniques

In the simplex method:

- We use only continuous variables
- There are NO strict equalities
- The objective function is obtained by the scalar product of the two vectors c and x

More compactly, we can write the problem in this way:

min(max) ¢’

s.t. alx =b (i=1...k)

1
1

alx <b (i=k+1...k)
1

T >b; (i=k+1...m)

An LP model has three possible outcomes, and the resolution process aims to determine which one
applies:

- Afeasible solution is any point x in an n-dimensional real space (R™) that satisfies all
constraints in the model

- Thefeasible region comprises all such points

- Anoptimal solution x is a feasible solution that optimizes (maximizes or minimizes) the value
of the objective function among all feasible solutions

cTx* < (=) cTx,Vx € R, x feasible

Not always a PL problem is an optimal solution. In fact, it can be shown that each PL problem always
satisfies only one of the following 3 cases:

1. Unfeasible: the feasible region is empty

2. Unlimited: itis possible to find feasible solutions that make decrease (or increase for
maximum problems) the value of the objective function as you like

3. Admits an optimal solution: there is at least one acceptable solution which optimizes the
objective function (and the optimum value of the objective function is limited)

Solve a LP problem by recognizing one of the three cases mentioned and giving, in case 3, an optimal
solution and the corresponding value of the objective function.
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5.2 GEOMETRY OF LINEAR PROGRAMMING

Consider the following example:

Solving an LP: example

The farmer problem: max 6000 x7 + 7000 xp
s.t. xT+xp <11 Txr <70 x>0
10x7 + 20 xp < 145 3xp <18 xp >0

e ~ Txr =70 | —— Gradient of the objective
B function
. . ‘-\-‘ _ eddy ~

------- Level curves (orthogonal)
6000 x; + 7000 xp =K

~
N L0 1205, = 145

(10,1 !
xptap=11

o " 12
(10.0) Xy

(0,0) toror

The farmer's problem is a maximization LP with two variables (x for tomatoes and xp for potatoes):
Maximize: 6000xT + 7000xP

The feasible region, shown in gray on the graph, is bounded by several lines representing the
constraints. The key points defining this region are:

- Origin (0,0)

- Point (0,6) on the potato tubers constraint

- Point (2.5,6) where potato tubers and fertilizer constraints intersect

- Point (7.5,3.5) where fertilizer and tomato seeds constraints intersect
- Point (10,1) where land and fertilizer constraints intersect

- Point (10,0) on the x-axis

The objective function is represented by the blue arrow showing its gradient (direction of steepest
increase). The dashed parallel lines are level curves of the objective function, perpendicular to the
gradient.

- To maximize the objective function, we move in the direction of the gradient until we reach the
furthest possible point in the feasible region. This occurs at the point (7.5,3.5), where the

fertilizer constraint (10x; + 20xp = 145) intersects with the tomato seeds constraint (7x; =
70)

- The optimal solution is therefore: x = 7.5 hectares for tomatoes xp = 3.5 hectares for
potatoes

- The maximum profit can be calculated by plugging these values into the objective function:
6000(7.5) + 7000(3.5) = 45,000 + 24,500 = 69,500 euros
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Geometrically, a solution is a point in the n-dimensional space and the feasible region is a convex
polyhedron inside of the same space:

The feasible region is a polyedron (intersection of a finite number of
closed half-spaces and hyperplanes in R")

0

/7 /
. facet /"

k.
P / / // r + < 2
- Ta + < 3

LRTH A z3 < 3
v L T+ T+ x4

T1,T2,23 20
LP problem: min(max){c”x : x € P}, P is a polyhedron in R".
A polyhedron is a geometric object formed by the intersection of a finite number of closed half-spaces

and hyperplanes in n-dimensional real space. In the context of linear programming, this represents
our feasible region - the set of all points that satisfy our constraints.

Points on the polyhedron are to be represented graphically by vertices, which represent geometrically
the convex combination on the plane (if they are convex, they are inside of the feasible region):

@ z € R"is a convex combination of
two points x and y if 3 A € [0,1] :
z=Mx+(1-XN)y

e z € R" is a strict convex combination of two points x and y if
INe<(0,1)>:z=Ax+(1-A)y.

@ v € P is vertex of a polyhedron P if it is not a strict convex
combination of two distinct points of P:
P,y €PAE(0,1):x#y,v=2Xx+(1- Ay

The following brings us to another theorem:

z € R" is convex combination of
xLx2 . xKif 3 AL A > 0

k k
Z,\,- —1andz :Z,\,-x‘
i=1 i=1

Theorem: representation of polyhedra [Minkowski-Weyl] - case ‘limited’

Polydron limited P C R”, v, v2, ... vk (v € R") vertices of P
if x € P then x = S5 | \iv/ with \; > 0,¥i = 1.k and 35| A; = 1
(x is convex combination of the vertices of P)
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For the Minkowski-Weyl theorem, the convex combination of all the vertices of a polyhedron allows us
to represent all the points belonging to the polyhedron.

So, for the optimal vertex theorem, if a LP can be represented by a polyhedron P, then there is at least

one optimal solution and one of these is on a vertex. This is an important result because we can limit
the search for the optimal solution on the vertices of P and not on the whole space.

Optimal vertex: from graphical intuition to proof

Theorem: optimal vertex(fix min objective function)

LP problem min{c"x : x € P}, P non empty and limited
@ LP ha optimal solution

@ one of the optimal solution of LP is a vertex of P

Proof:
V={vv2 vk}  v*=argminc’v
veV
k k k k
cTx= CTZ)\;V’ = Z/\,-CTV‘ > ZA;CTV* = cTV*EA; =cTv
i=1 i=1 i=1 i=1
Summarizing: VxeP, cTv:<cx |

We can limit the search of an optimal solution to the vertices of P!J

So basically:

- Thistheorem has profound practical implications: when solving a linear programming
problem, we can restrict our search to vertices of the feasible region rather than considering
all pointsin P

- Thetheorem transforms what appears to be an infinite search problem into a finite one,
though the number of vertices may still be exponentially large

Now we consider how the vertices problem intersection of hyperplanes arises:

Vertex comes from intersection of generating hyperplanes

max 13x3 + 10x2

st 3x1 + dxp < 24 (el)
x1 + dxp < 20 (e2)
3 + 2% < 18 (e3)
X1 . x» > 0
B=elne2 (2,9/2) 71
C=elne3 (4,3) 82

E=e3Nn(xx=0) (6,0) 78
U:(XJ_ZO)H(XQ :0)

A=e2n(xy=0) (0,5) 50

C optimum!

L
0 J‘r X,

Each vertex in the feasible region is created by the intersection of exactly two constraints
(hyperplanes in this 2D case). The image shows several key vertices:
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- Point B occurs at the intersection of constraints e1 and e2, giving coordinates (2, 9/2) with
objective value 71

- Point C forms where e1 and e3 meet, at coordinates (4, 3) with objective value 82

- Point E comes from e3 intersecting x, = 0, at (6, 0) with value 78

- Point Aresults from e2 meeting x, =0, at (0, 5) with value 50

- The origin (0, 0) is formed by x, = 0 intersecting x, = 0, with value 0

In this case, vertex C at (4, 3) provides the optimal solution with the highest objective value of 82. This
aligns with the theory that an optimal solution will occur at a vertex formed by intersecting
hyperplanes.

Understanding how vertices form from constraint intersections is crucial because:

1. It helpsvisualize how the feasible region is bounded

2. It provides a systematic way to identify candidate optimal solutions

3. It forms the theoretical foundation for algorithms like simplex that move between adjacent
vertices

We want to transform inequalities in equalities (we have some gap, which are to be called slack
variables). In this case, there is a specific algebraic representation of vertices:

In our linear programming problem, we start with inequalities: 3x, + 4X, < 24 x, + 4X,< 20 3x, + 2x,< 18

To convert these into equations, we introduce slack variables (s,, s,, S;) that represent the "gap"
between the left and right sides of each inequality:

X, +4X, +8, =24 X, +4X,+5,=203X, +2X, +S;=18

These slack variables must be non-negative, as they represent the amount by which each constraint is
not tight.

There is some degree of freedom — in this system, we have:

- Variables total (x,, X5, S;, Sy, S3)
- 3 equations; this gives us 5 - 3 =2 degrees of freedom, meaning we can set any two variables
to zero and solve for the remaining three variables to potentially find a vertex.

To find a vertex algebraically:

1. Select any two variables to set to zero
2. Solve the resulting system of three equations in three unknowns
3. Verify the solution is feasible (all variables non-negative)

For example:

- Setting s, =s,=0gives vertex B at (2, 9/2) withs; =3
- Setting x, =s, =0 gives vertex A at (0, 5) with other variables s, =4,s,=8
- Setting s, =s; =0 gives point (3.2, 4.2) with s, = -2.4, which is not feasible because s, <0
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This algebraic approach provides a systematic way to identify all vertices of the feasible region by
examining different combinations of variables set to zero.

Write the constraints as equations

3x1 + 4x0 + s = 24
x1 4+ 4x + s = 20
3x1 + 2xo + s3 = 18

5 — 3 = 2 degrees of freedom:
we can set (any) two variables to 0 and obtain a unique solution!

s1=s5=0 (2,9/2,0,0,3) B

R \\ x1=%=0 (0.5,4,0,8) A

At B A

=5=0 (3.2,4.2,-2.4,0,0)
not feasible!

4 .
0 £

Whenever we have a negative slack, the problem is not feasible (not inside of the feasible region).

- Note that this solution corresponds to the vertex B. Infact, place s1 =s2 =0 means, from a
geometrical point of view, saturate the constraints (e1) and (e2): the solution will then be
found at the intersection of the corresponding lines. Another particular solution can be
obtained by fixing at 0 the variables x1 and s2, which leads to the solution x1=0,x2 =5, s1 =4,
s2 =0, s3 =8, corresponding to the vertex A.

- We therefore feel that, among the infinite (00573) solutions of the system of equations equates
to the constraints of the problem, there are some particular ones: these solutions are
obtained by setting a suitable number of variables to 0 and correspond to vertices of the
eligible region.

- Note that the variables to be set at 0 must be appropriately chosen. For example, if x1 =s1 =0,
we get the solutionx1=0,x2=6,s1=0, s2=4, s3=6 which does not correspond to a vertex of
the polyhedron: the solution obtained is in fact inadmissible since s2 < 0 indicates that the
constraint (e2) is violated.

We try to generalise these observations.

- The first step is to write the constraints of a PL problem in a convenient way as a system of
linear equations

- The second step is to manipulate the system of equations in order to derive solutions
corresponding to vertices of the allowable polyhedron.

We then introduce the standard form for a PL problem and recall some notations and properties of the
linear algebra.
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To create a generic approach to use, we consider the standard form for LP problems, with all variables
= 0, so to find easily the unfeasible form, with all constraints as equalities:

min  cix1 + Cx2 + ... + CaXn
st. anuxitapxa+...tanx, =b (i=1...m)
xi € Ry (i=1...n)

minimizing objective function (if not, multiply by —1);

- variables > 0; (if not, substitution)
- all constraints are equalities; (4/— slack/surplus variables)
- b > 0. (if not, multiply by —1)

Here:

- The objective function is minimization and without additive or multiplicative constants
(multiply the maximizing functions by —1; additive constants can be neglected; positive
multiplicative constants may be overlooked, the negative multiplicative constants can be
eliminated by changing the direction of optimization)

- Allvariables are positive or nil (if and where there are substitutions of variables for the free or
negative variables)

- Allconstraints are equations (add a positive slack variable for the < constraints and subtract a
positive surplus variable for the > constraints)

- The known terms b; are all positive or null (multiply by —1 the constraints with negative
constant term)

This allows, without loss of generality (wlog) to solve whatever PL problem via systems of linear
equations.

Consider the following example of the standard form, where we use what described above via
whatever PL problem using linear equations systems:

max 5(—3x1 + 5x2 — 7x3) + 34
s.t. —2x14+7x2+6x3—2x1 <5
—3x1 +x3+12 > 13
X1+ x <=2

X1 S 0
x2 >0

X1 =-x1 (1 > 0)
x3=x —x3 (x5 >0, x3 >0)

min  —3% —5xo + 7x3 — Tx5
sit. 4% +Tx+6x5 —6x3 +s51=5
321+x;—x3_—52:1
X1—X0—53=2
2120, x>0,x5 >0, x >0,5>0, >0, s3>0.

Written by Gabriel R.



103 MeMoCO Simple (for real)

Here's how we transform the original problem:
Step 1: Convert Maximization to Minimization

The objective max 5(-3x, + 5x, - 7X3) + 34 becomes: min -5(-3x, + 5%, - 7X;) - 34, which simplifies to: min
-15x, + 25x, - 35x; - 34

Step 2: Unrestricted Variables Handle
For x, < 0: Replace x, with -X, where X, 2 0
For unrestricted x,: Replace with x; = x;* - X,~ where x;*, x,~2 0
Step 3: Convert Inequalities to Equations
Add slack variables (s;, s,, S;) to convert inequalities into equations:

- For < constraints: Add slack variable
- For= constraints: Subtract slack variable

Step 4: The Final Standard Form
Objective: min -3X, - 5X, + 7X5" - 7X5~
Subject to: 4%, + 7X, + 6X;" - 6X;” 5, =538, + X3 - X3 -8, = 1R, - Xy -83=2
Non-negativity: X,, X5, X3*, X3™, S4, Sp, 320

This standard form ensures all variables are non-negative and all constraints are equations, making it
suitable for solution methods like the simplex algorithm.

Now, some recalls of linear algebra:

Vi

V2
column vector v € R™!: v =

Vn
@ row vector v € RV*": T = [vi, V2, ..., Va]
d1i1 412 ... dla
A dilr 412 ... dla
@ matrix A € RM*" = )
ami dAm2 .- @mn

n

o v,w € R", scalar product v-w = E viwi=v w=w'v

i=1

Rank of A € R™*", p(A), max linearly independent rows/columns
B € R™*™ invertible < p(B) = m <= det(B) # 0

©

So, basically a system of m linear equations in n variables can be written in matrix form as Ax = b,
where:

- Aisanm X n matrix containing the coefficients
- xisann-dimensional vector of variables
- bisanm-dimensional vector of right-hand side values

Ax = b, where Ac R™" bcR™e x € R".
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There are different ways on which we calculate solutions for systems of linear equations as seen
below:

e Systems of equations in matrix form: a system of m equations in n
variables can be written as:
Ax = b, where A e R™*" b cRM™e x € R".
@ Theorem of Rouché-Capelli:
Ax = b has solutions <= p(A) = p(A|b) = r (""" solutions).
@ Elementary row operations:
» swap row /i and row j;
» multiply row i by a non-zero scalar;
» substitute row i by row i plus « times row j (a € R).
Elementary operations on (augmented) matrix [A|b] leave the same
solutions as Ax = b.

@ Gauss-Jordan method for solving Ax = b: make elementary row
operations on [A|b] so that A contains an identity matrix of

dimension p(A) = p(A|b).

One way to solve a system of linear equations refers to the concept of base which is present when the
matrix has maximum rank (square submatrix B € R™ ™), obtained by taking m linearly independent
columns from the matrix. Having the determinant not null, we could rewrite the system as:

Ar =15
7] =
Brp+ Frp=5
We can find the variables present in the basis with:
ap=B"1— B Fap

The variables outside of the base are setto 0 (xr), we get a basic solution. In a basic solution at least
n — m variables are equal to 0 (if more, the basis becomes degenerate).

We get the values of what’s present in base (xg) finding a feasible solution when coming back to the
original constraints.

rp =B >0
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Since vertices and basic solutions correspond (Ax = b © x is a P vertex), the solving the linear
system brings a polyhedron vertex; to use different bases, one only needs to change the variables
fixed to 0. Everything said up to know is summarized below:

Basic solutions
e Assumptions: system Ax = b, A€ R™*" p(A)=m, m< n
e Basis of A: square submatrix with maximum rank, B € R™*"™
e A=[B|N] B R™™ det(B)+#0

X
X = |: B },XB eR™ xycR"™™
XN

. Ax_b:>[B|N]{§B}_BxB+NxN_b
N

e xg = B71b— B Nxy
e imposing xy = 0, we obtain a so called basic solution:
[ ]=1%0)
X = =
XN 0
e many different basic solutions by choosing a different basis of A

e variables equal to 0 are n — m (or more: degenerate basic solutions)

All of the non-basic variables are set to 0 = basic solution.

In a linear program in standard form, we seek to minimize c"x subjectto Ax = b and x > 0. A basic
solution becomes feasible when all basic variables are non-negative. Let’s look at an example:

Basic solutions and LP in standard form

min - ¢1xy + Cxs + ...+ CphXp min ¢Tx
st. apxy+apxo+ ...+ apxn =b; (.' =1... m) s.t. Ax =0b
xi € Ry (i=1...n) x >0

e basis B gives a feasible basic solution if xg = B~'b >0

3Ix1 +dxa 45 = 24 3 41 00 24
x1 +x +5 = 20 A=|1 4 0 1 0 b= 20
Ix1 +2x +s3= 18 3 2 0 01 18
A
3 4
B,=1|1 4
A 3 2

«[2]-[3]

x"'=(29/200 3) — vertex B

o Xy

Looking at the example provided:

- We have three equations with five variables (x,, X,, S, S, S3), Wwhere s,, s,, s; are slack
variables: 3x; + 4x, + S, =24 X, + 4X, + S, =20 3X, + 2X, + 5, =18

- Coefficient matrix A is shown as a 3x5 matrix containing both the original coefficients and the
identity matrix corresponding to slack variables
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- Tofind a basic solution, we select a basis matrix B, composed of three columns from A. In this
example, B, is formed by columns 1, 2, and 5 of A, corresponding to variables x,, X,, and s,

- The basic variables xB are computed as B,™"b: xB = [x,, X,, S5]T =[2, 4.5, 3]T

- The non-basic variables xN are set to zero: xN =[s,, s,]T =[0, 0]7

This gives us the complete solution vector: x=[2, 4.5, 0, 0, 3]

This basic solution is feasible because all components are non-negative. Geometrically, this solution
corresponds to vertex B in the feasible region shown in the graph. The same continues for one another
iteration:

Basic solutions and LP in standard form
;

min  ¢1xy + GXxs + ...+ CpXp min c¢'x
st. anxy+apxo+ ...+ apxy, = b; (I =1... m) s.t. Ax =0b
xi € Ry (i=1...n) x =0
@ basis B gives a feasible basic solution if xg = B~16>0
3a +dxe +s5 = 24 3 4 1 0 0 24
X1 +4x +5 = 20 A= 1 4 0 1 0 b= 20
3Ix1 42x +s3= 18 3 2 0 0 1 18

X,

Al

[y
o O =

[i]
[l

o[ 5]-[2]

xT = (606140) — vertex E

X1
51
S
X2
53

In this example, we can see that the chosen basis B, leads to a basic solution that is not feasible.

When we calculate xB = B, 'b, we get:

- x,=18/5
- X,=21/5
- s,=-18/5

The issue lies with the value of s,. In linear programming, all variables (including slack variables) must
be non-negative due to the constraint x = 0 in standard form. However, s, = -18/5 is negative, violating
this non-negativity requirement.

This illustrates an important principle in linear programming: while a basis B may be mathematically
valid (in that B is invertible and we can compute B~'b), the resulting basic solution is only feasible if all
components of xB = B'b are non-negative. When any component is negative, as in this case, we say
the basic solution is infeasible.
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Geometrically, this means that while the intersection of the chosen constraints does define a pointin
space (18/5, 21/5), this point lies outside the feasible region of our linear program because it violates
the non-negativity requirement for slack variables.

Basic solutions and LP in standard form

min ¢x; + GXxo + ...+ ChXp min c'x
st.  ajpxy +apxe+ ...+ aipxy, = b; (.f =1... m) s.t. Ax =b
xi € Ry (i=1...n) x >0
@ basis B gives a feasible basic solution if xg = B~'b >0
I +édx s = 24 3 4 1 0 0 24
X +bx +5 = 20 A=|1 4 0 1 0 b= | 20
3x1 42x +s3= 18 3 2 0 01 18
4
B,=1|1 4
2

1
0
0
x1 18/5
xe=| x ] =B, 'b= l 21/5 ]
-18/5

xT = (18/521/5 —18/5 0 0) — n.f.!

t ]Y v X

This relationship is captured in a key theorem that provides an algebraic characterization of
polyhedron vertices. This equivalence has several important implications.

- First, it connects the geometric concept of vertices (intersections of the right number of
hyperplanes) with the algebraic concept of basic feasible solutions (where n — m variables are
zero). This provides two complementary ways to understand and work with optimal solutions.

- Second, this relationship leads to a crucial corollary about optimal solutions: if the feasible
region P is non-empty and bounded, then there exists at least one optimal solution thatis a
basic feasible solution. This corollary is fundamental to linear programming because it tells us
we can restrict our search for optimal solutions to the vertices of the feasible region.

Feasible basic solution ~» n — m variables are 0 ~~
intersection of the right number of hyperplanes ~~ vertex!

PL min{c"x: Ax = b, x > 0} P={xeR": Ax=b,x > 0} |

Theorem: vertices correspond to feasible basic solutions

(algebraic characterization of the vertices of a polyhedron)

x feasible basic solution of Ax =b <<= x is a vertex of P

Corollary: optimal basic solution

If P non empty and limited, then there exists at least an optimal solution
which is a basic feasible solution
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5.3 SIMPLEX BASIC ALGORITHM AND EXAMPLE

The following algorithm explores all possible basic feasible solutions, which can be done efficiently
using this approach. The complexity is up to exponentiality, but the Simplex method provides a more
efficient way to explore the feasible solutions, considering only the improving ones.

Algorithm for LP (case limited): sketch

Consider all the feasible basic solutions:
@ put the LP in standard form min{ch : Ax = b, x > 0}
@ incumbent = 400
© repeat
©  generate a combination of m columns of A
© let B be the corresponding submatrix of A
@ if det(B) == 0 then continue else compute xg = B~ b
@ ifxg>0and chs < incumbent then update incumbent
@ until(no other column combinations)
Complexity: up to ( :1 ) = m'r(nnilm)! basic solution!!!
= Symplex method: more efficient exploration of the basic solutions
(only feasible and improving)

To exploit this idea is to change the basic variables (take a column inside of the basis and exchange
columns between each basis):

LP problem in standard form:

min z=-—13x; — 10x
s.t. 3x1 + dx, + 5 = 24
x1 + 4dxo + s = 20
3xp + 2x> + s3 = 18
X1 s X2 , 51 ., S , S3 = 0

an initial basic feasible solution (vertex B):

3 4 0] 10
eB=|140 N=1]01
3 2 1] 00
X1 [ 2
exg=|x | =1 9/2 XN:[?]:[S}
53 L 3 2
e ZB=CTX=C§-XB+C,{,-XN=—71

When the basis changes, one non-basic variable increases, affecting the values of the basic variables
and the objective function value. The objective function contains only non-basic variables, and base
variables are expressed only in terms of hon-basic variables.

Written by Gabriel R.



109 MeMoCO Simple (for real)

This can be expressed mathematically as follows:

Example

Change basis: New basic solution = one non-basic variable increases
affecting xg and zg

XB B~b—-B INXN
z cTx=chxg+cyxn=ch(Bb— B N xn)+ cyxn

=cg B b+ (cf — cE B~IN) xy

Write xg and z as functions of only non-basic variables

For the sake of manual computation, use Gauss-Jordan:
Ax=b ~ [BN|b] ~ [BB=IBN=N|Blb=5h]

xg = b— Nxy r

You see how Gauss-Jordan (row/column operations done algebraically) applies here:

Example X1 x s s 5 b
3 “ 0 1 0 24
1 4 0 0 1 20
3 2 1 0 0 18
(R1/3) 1 4/ 0 1/3 0 8
(R, — Ry/3) 0 8/3 0 -1/3 1 12
(R — Ry) 0 —2 1 -1 0 —6
(R1 —1/2 R,) 1 0 0 1/2 —-1/2 2
(3/8 R») 0 1 0 -1/8 3/8 9/2
(Rs +3/4 Ry) 0 0 1 —5/4 3/4 3

X1 = 2 — 1/2 s1 4+ 1/2 )

X2 = 9/2 - 1/8 51 — 3/8 )

S3 = 3 + 5/4 55 — 3/4 s

z =—13x1—10x0 = —-71 + 21/4 51 — 11/4 )

At each iteration, we want to modify a basic solution in a linear programming problem to achieve a
better objective value, while maintaining feasibility and satisfying the problem constraints.

The key steps in this example are:

1. ldentify the objective function and the equality constraints that must be satisfied

2. Recognize the opportunity to increase the value of s2 to improve the objective function, while
maintaining feasibility.

3. Derive the novel solutions by expressing the basic variables (x1, x2, s2) in terms of the non-
basic variable s2.

4. Determine the feasible range for s2 that preserves non-negativity.
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5. Identify the new optimal basic solution when s2 = 4.

z = —T71 421/4 5 -11/4 s,
@ In order to minimize, it is convenient to increase s, (and keep s; = 0)
@ Equalities have to be always satisfied...:
X1 = 2 + 1/2 S
x2 = 9/2 - 3/8 s
53 = 3 - 3/4

@ while preserving non-negativity:

x>0 = 24+1/25p>0 = s > —4 always!
x>0 = 9/2-3/85>0 = s < 12
s3>0 = 3—-3/455>0 = s < 4

New feasible and better solutions with sy =0and 0 < s, <4

[+

so = 4 = s3 = 0: new basic, feasible and better solution

Inside of the feasible region, it is impossible to obtain better value to the optimal solution value (z)
inside of the base (basic solution), expressed in terms of the non-basic variables (so to understand up
to which limit we enter the basis):

New basic solution! s» (now > 0) takes the place of s3 (now = 0):

3 4 0 1 O X1 4

B=|1 4 1 0 0 xg=| x | =13

3 2 0 O 1 5o 4
XN— = —ch=chB+cg,—xN=782

53

Same arguments as before: xg and z as a function of xy:

X1 = 4 + 1/3 ) 2/3 53
Ax=Db X2 = 3 — 1/2 5 — 1/2 s3
Sy = 4 + 5/3 s1 — 4/3 S3
z= c"TxJ z = —-82 4+ 2/3 s + 11/3 s3

Optimal solution! Visited 2 out of ( . ) = 10 possible basis

3
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The LP problem will be expressed in a canonical form with respect to a specific basis, combining
linearly all non-basic variables with coefficients:

PL min{z = ¢ x : Ax = b,x > 0} is in canonical form with respect to
basis B if all basic variables and the objective are explicitly written as
functions of non-basic variables only:

Z = ZB + ENl XNl + EN2 XNQ + ot EN(nfm} XN(n—nr)

xg, = bj — ain, xn, — diny XN, — -.. = aiN,

n—m)

5 scalar (objective function value for the corresponding basic solution)
b; scalar (value of basic variable i)

B; index of the i-th basic variable (i =1...m)

N; index of the j-th non-basic variable (j =1...n— m)

coefficient of the j-th non-basic variable in the objective function (reduced cost of
the variable with respect to basis B)

—3jn, coefficient of the j-th non-basic variable in the constraints that makes explicit the
i-th basic variable

Each linear variable is written in the form of non-basic variables and vice versa, where each variable
willincrease or decrease according to the current value of the o.f.

We start from a feasible solution, and we put a system in a canonical form (system/function) with
respect to a given basis. If all the reduced costs cannot be improved they are all positive and this is
the optimality check; we stop when they are all positive:

@ Reduced cost of a variable: marginal unit increment of the objective
function

@ The reduced cost of a basis variable is ¢g. = 0

Theorem: Sufficient optimality conditions

Given an LP and a feasible basis B, if all the reduced costs with respect to
B are > 0, then B is an optimal basis

¢G>0, Vj=1...n = B optimal

o Notice: the inverse is not true! [there may be optimal basic solutions
with negative reduced costs|

The condition is sufficient though; for example, to see if we can improve/reduce the cost of the
objective function we welcome variables with negative reduced costs.

The basis change is a fundamental operation in the simplex method that allows the algorithm to move
from one basic feasible solution to another while potentially improving the objective function value.
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This process involves two key steps:

1. The entering variable is chosen to potentially improve the objective function. Mathematically,
this means selecting a variable x; such thatits reduced cost ¢, is negative, keeping the
problem feasible

2. The leaving variable is selected to maintain feasibility through the "minimum ratio rule". This
ensures that no basic variable becomes negative during the transformation

o From feasible basis B, obtain a B adjacent, feasible, improving

@ One column (= variable) enters and one variable leaves the basis

o Entering variable (improvement): any x; : ¢, < 0

zZ=2Zg + CpXp = Zg < ZB

e Leaving variable (feasibility): [min ratio rule]

) bi .
xg; >0 = bi—apxp>20,Vi = xhgé—’:‘v’f:é,-h}(]
ih
. [ b
t = arg min {_—f cajp >0
i=1l..m | djh
be .
Xh =~ >0 = xB, =0 [xg, leaves the basis!]
th

If there is strictly negative reduced costs and the coefficients related to the variables are non-positive,
then the problem is considered unlimited:

@ Let x5 Cp < 0.
zZ = Zg + Cp Xp

X, = f_),‘ - E.-'h Xh (lem)
e If 3, <0, Vi=1...m, feasible solution with x; — 400

Condition of unlimited LP

There exists a basis such that
dxp: (Gh < 0) A (&G < 0, V i=1...m)
The simplex method is a systematic geometric approach to solving linear programming problems by
systematically exploring the vertices of a polyhedron defined by linear constraints. Its core strategy

involves transforming the problem into a standardized form and strategically moving between basic
feasible solutions to optimize the objective function.
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The algorithm follows this schema seen below:

Init: PL in standard form min{c”x : Ax = b,x > 0}, and an initial
feasible basis B
repeat
write the LP in canonical form with respect to B
zZ= 219 + Cnp XNy + CNp XN, T+ T+ Em{n_m) XN m)
xg,

i

— . — 3. — 3. _ — 3. — 3
= bj — ain, Xy, — 3N XN, — - - TNy XNip—m) (i=1...m)

if (; > 0,V j) then B is an optimal basis: stop

if (3h:& <0and 3 <0, Vi) then unlimited LP: stop

Entering variable: any xj, : ¢, <0

Leaving variable: xg, with t = arg min {{J' D ap > O}
i=1l.m | djx

B < B & Ap © A, [basis change]

until (LP optimum found or unlimited)

In summary:

Choose the variable to enter the base, so to find an adjacent base and a feasible solution
Choose the variable to exit the base: use the minimum ratio rule

Change the base to converge to optimum

When all reduced costs are non-negative, stop; but if all reduced costs are negative, problem
is unlimited

b~

Usually, there is a “human-readable” form so to represent the simplex operations, in the form of an
augmented matrix, which is the simplex tableau:

@ Represent the canonical form, can be used to operate Gauss-Jordan

e Objective function as a constraint (imposing the value of a new
variable z):
Z=CX1+ o+ ...+Chxpn ~ XL+ o+ ...+ Cxp—2z=0

XB, e XB, XN e xy, ., z b
riga O 0 e 0 O o |-1|0
riga 1 1 0 O O] 0 |0

O O O
riga m 0 1 O O] 0 |0

Tableau in canonical form
e Elementary row (z included) operations: up to reading xg (and z) as
functions of xp

Recalling that the tableau is a schematized form of the canonical form for a linear programming
problem, we note that:

- The last column of the table shows the solution of the problem compared to the current base:
the value of the variables in base and, in the first row, the opposite of the value the objective

function
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- The columns of the variables in base correspond (if properly ordered) to the identity matrix
surmounted by a line of 0 (the reduced costs of the variables in base)

- The columns of the out-of-base variables correspond to the coefficients of the canonical form
(where they are preceded by the minus sign) and, in the first row, show the reduced costs

The simplex method simply goes on and terminates when all reduced costs are non-negative.
Problem is, if entering variable is not selected carefully, the method might loop encountering an
already visited solution.

5.4 Two-PHASE METHOD

The two-phase method is a systematic approach to finding an initial feasible basis or find out if the
problem is not feasible when it is not immediately apparent. This technique ensures that we start with

a valid starting point for the simplex method.

- Construct an auxiliary optimization problem designed to find a feasible initial basis for the
original linear programming problem, while keeping it feasible (sometimes harder than the
actual problem), using y as base (called vector of artificial variables)

- Solve the original LP problem using the simplex method, then use the initial feasible basis as
the starting point, in order to make the problem tractable

Retrieving an intial feasible basis: two-phases method

- min c*Tx
e Phase |: solve an artificial problem Ax=b
X >=0
w'= mnw= 1lly=y+y+-+ym »
s.t. Ax+1ly=0b y = : € RT
We can simply use "x"
x,¥ 2 0 tomake the sol. feasible ¥Ym
If w* > 0, the original problem is unfeasible, stop! y = how much we
¥ are far from
If w* =0, theny =20 feasibility

» if some y in the (degenarate) basis, change basis to put all y out, thus
obtaining an xg feasible for the original problem!

@ Phase Il: solve the problem starting from the provided basis B

Phase 1: Artificial problem solution

So, starting from the artificial problem, the simplex method can be used to remove all artificial
variables and keep the problem solvable in some way. The following is the artificial problem:

w*= minw= 1Ty=uy,+1y+ ...+ Ym Y
s.t. Ar+1Iy=0> y € R Yy = :

z,y >0 U
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To change to the tableau (canonical) form, operations are needed on the first row, to turn the 1s into
0Os and obtain, instead of Os, the reduced costs of the variables out of base x with respect to base y.

—wy YA ”I ‘

b A I

One can then start with the steps of the simplex described above until an optimal solution of the
artificial problem is reached. It should be noted that the artificial problem is always feasible and
cannot be unbounded.

In the end, the optimal value of the objective function of the artificial problem can be (having to
exclude the case wx* <0):

- w* > 0:itis concluded that the original problem is not feasible (and we obviously do not
proceed with Phase Il).

- w* = 0:Inthis case, all artificial variables are necessarily null. They can therefore be
eliminated from the system of constraints, and the same system will be satisfied with only the
variables x. In other words, the problem is admissible. To identify the initial basis, two
subcases are distinguished:

o Ifallvariables y are off-base, then the final tableau of Phase 1 directly locates the
variables x in a feasible basis and the problem is feasible

o Ifanyvariable y isin base, then it will be in base at the value 0. It is therefore always
possible to perform pivot operations (one for each variable y in base) to exchange an
in-base y for an out-of-base x. This yields an optimal alternative with only variables x in
base, leading back to the first subcase

Phase 2: Solution of the starting problem

Any basis obtained at the end of Phase | can be used to initialize the simplex method. Using the
simplex tableau, at the end of Phase | we will have:

Ta] - Tgim) Iy Y

—w | —w* =10 07 '7,.}',: >0 Ay =0

Ta[1]

Ta(m)

To restore the final tableau of Phase | in terms of the initial tableau of the original problem, the
following steps are taken. The columns of artificial variables are removed and the costs of the original

objective function and the value O for the objective function are returned to the first row:
-

Lalt] - TPm) Iy Y
—z | 0 b ch //
'.F-‘"'rl 1]
b / F //
‘I'.H|m]
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We then switch to the canonical tableau form with operations on the first row to return the reduced
costs of the variables in the base to 0.

g - TEim) g

- - T =1
—Z —Zp 0 Co

A

Tg[m]

At this point the tableau (and the system of equations it implies) is restored to its usual form for the
application of Step 1 of the simplex.

5.5 SIMPLEX ALGORITHM IN MATRIX FORM AND REVISED ALGORITHM

The simplex algorithm can be elegantly reformulated using matrix operations, providing a systematic
approach to solving LP problems in standard form, using linear algebraic techniques able to simplify
complex optimization problems.

t T ' : T T
minz = ¢’ x minz = CcgXg + CyXN
T e—
s.t X =

st. Bxg+Nxy =0b

>0 xg,xy =0
standard form e A—[ with (feasible) basis
<+ 7
1 6 a0
z = cgxg+ cyxn =(C, (= =
B N 5B N —CB W
—z + gn = —zp b=8"1b
Y = zg =cEB~1b 6/
(IxB + N = b <8 e =
N=B"!N
canonical (or tableau) form ET =c) —cIBIN

Basic and non-basic variable sets want to represent the numbers in such a way the problem becomes
tractable, so to decompose the solution properly. So, the problem can be written as:
minz = 'z
st. Arxr =0
r >0

At any step, consider a basis B which allows us to write the same problem as:

min z = rtf),:?f 5+ (*j,.r »
st. Brp+ Frp =b

rp.rp Z 0
Or in the equivalent tableau form:
—2Z + (_i',Ij = __:H
lep + Fop = b
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Solvers do not use the tableau but just compute what they need —it’s like being in a maze (feasible
solution space) and then taking a shortcut. This is done using only relevant parts.

Map the coefficients of the canonical formé

z = zg + Gy Xn, + Cn X + ... =+ (_:u(,,, m) XV(n—m)
Xp, = bi - 51‘1/1 X = o Xyy — e éiu‘,,,m) XV(,,,,,,J
XBm = b — T X, — .o 5“/1" m Vin—m)
~ T
-z + CyXn = —2ZB
.. Into matrix operations
E Ixg + Nxy = b

b -1 ® b =(B7'h
°b=8"' &g P = ];
@ zg=ciB b o u =Bt zg=u'b
o N=BN o i, B K] &,
o|éy =cy —cgBTIN @G, =[G, =c,—uN,

Here:

b=B"1 (value of basic variables in the current basic solution)

- zg = c}b (current value of the o.f.)
- F=B7'F (columns of the non-basic variables expressed in terms of the current basis)

T - . .
- Cp = cf — cEB™1F (vector of reduced costs for non-basic variables)

At each step, then, simply invert the base matrix B and compute the elements listed above. In fact, the
substitution steps seen above, as well as the pivot operations on the simplex tableau, correspond
exactly to the algebraic steps on the matrices. Consider, for example, the second iteration of the
simplex seen above, at the base xg and non-basic variables xr.

For this specific reason, we use the (revised) simplex algorithm:

The (revised) simplex algorithm

© Let 3[1],..., 3[m] be the column indexes of the initial basis

Q Let B= I:AIB[]_]‘...‘As[m]] and compute Bt e u” = ¢I B!

© compute reduced costs: ¢, = ¢ — uT Ay, for non-basic variables x,
If €, > 0 for all non-basic variables x,, STOP: B is optimal

Choose any xj; having ¢, < 0

m

Compute b= B~1b = [ b; ]:ﬂ:l e A, =N, =B 1A, = [ aip ]1:1

Determine t = argminj=1._.m {E;/E;h, ap > 0}

o
o
o
Q If 535, <0, Vi=1...m STOP: unlimited
o
© Change basis: J[t] « h.

@

Iterate from Step 2
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The original and revised simplex methods differ primarily in how they store and update information
during the optimization process:

- The original simplex method maintains and updates the entire tableau at each iteration. This
means it explicitly stores all the coefficients for both basic and non-basic variables, as well as
the right-hand side values. When a pivot operation is performed, the entire tableau must be
recalculated using elementary row operations.

- The revised simplex method, in contrast, only maintains the essential information needed for
each iteration. Specifically, it stores:
o The current basis matrix B and its inverse B™
o The current basic solution values
o The original problem data (A, b, and c)

When evaluating potential entering variables or performing updates, the revised method computes
the necessary coefficients using matrix operations with this stored information.

Imagine you want to solve the following problem (here for complete resolution in Italian), which is then
represented by the standard form:

Solve:
max 3x + X — 3x3
s.t. 2x1 + Xo — x3 < 2
X1 + 2xp — 3x3 < b
2x + 2xp — x3 <

6
>0 . x>0 . 4
R, = =23

Standard form

min —3x31 — x2 — 3X3
s.t. 2x1 + x» + X3 X = 2
x1 + 2% + 3x3 + X5 = b5 m
2x1 + 2x0 + X3 + xs) = 6
X1 s X2 s >?3 , Xa . X5 3 X6' > 0 r%

We now apply the simplex method, considering all the relevant parts needed — negative slack variable,
expression in matrix terms and finding of a feasible basis in x4, x5, x4:

min =3x1 — x — 3%

s.t. 2x1 + x + X3 4+ xa = 2
x1 + 2x + 3% + Xs 5
2X1 + 2X2 + )?3 + X = i
xXx , x , X3 , xa , x5 , x =0

2(1|1]1|0]0 2
A=A |A |As|As|As|As |=| 1]|2|3[0[1|0| b=]|5
2(1]|0|0|1 6

XT:[X]_ X2 )?3 X4 Xs XG] CT:[*3 -1 -3 0 0 0]

P —

Feasible initial basis (suppose given):|B = [A4|As|Ag] )

di-s oo

=5
~—

33 =6,
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The formula is to always use vectors which are to be computed only once when needed, using what
we had before, computing reduced costs one at a time:

. into matrix operations

Going on with the simplex application, keeping the base feasible.

- Iteration 1 - Step 2: Inverting the base and compute the u multipliers

- lteration 1 - Step 3: Compute reduced costs

- Iteration 1 - Step 4: Optimality test

- Iteration 1 - Step 5: Choice of the entering variable for the basis exchange

lteration 1: steps 2-5 YN . Eka =y |
x§=[x4 Xs X5] CBT=[0 0 0] "
1 00 1 00
B=|010 B'=|010
0 0 1 0 0 1
1 00
u'=cgB*=[000][0 1 0|=[00 0]
e S | g P ]
\:2!_
El—Cl—uTA1A—3—[0 0 0] 1 ——3—0@ (’7{1 )
e — 2
:1= g
B o s T Py i 2 | =-1-0=-1) h=2
SH=6—u A L [0 0 0][ . Ozo (é__aenters)
:1:
G=c-uTA3=-3-[000][3]|=-3-0=-3 ()
1
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- lteration 1 - Step 6: Updating columns (known terms and entering variable)
- Iteration 1 -Step 7: Unboundedness test

- Iteration 1 - Step 8: Determining the exiting variable for the basis exchange
- lteration 1 - Step 9: Updating indices of the columns of the feasible base

Iteration 1: steps 6-9

B 1 00 1 1
A,,: 01 0]|]2|=]2
_” 0 0 2
- -
2
2 )5 6
t=argmin{(% |3 3 }=arg (1) @ ~+ Xy leaves
<
Bl1] = (column 2 replaces /3[1] that was 4)
Pl e

- lteration 2 - Step 2: Inverting the base and compute the u multipliers

- lteration 2 - Step 3: Compute reduced costs

- lteration 2 — Step 4: Optimality test

- Iteration 2 — Step 5: Choice of the entering variable for the basis exchange

Iteration 2: steps 2-5

XBT:[XQ X5 X5j| cg:[—IOO]
s
1 0 0
B=|2 1 0
2 01
uT:ch_l—[—l 0

JL

2
(Elﬁczl}uTAl:—3—[~l 0 0][1|=-3-(-2=-1
2 —
1
3

=-3+1 @ h=3
/_\_1/'
(X3 enters)

_4:C4*UTA4: 0*[—1 0 0] 0 :0*(*1):L
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- Iteration 2 - Step 6: Updating columns (known terms and entering variable)
- Iteration 2 - Step 7: Unboundedness test

- Iteration 2 — Step 8: Determining the exiting variable for the basis exchange
- lteration 2 - Step 9: Updating indices of the columns of the feasible base

Iteration 2: steps 69

B 1 00 2 2 X2 <
b=B"'b=| -2 10 51 =11 X5
-2 01 6 2 Xp
B 1 00 1
Ap= B 'A3=| -2 10 3| =
~—= | 201]/[1 -1

. s 1

t:argmm{ i @X }:arg (—) =2 @Ieaves
— \1 —

B2l =3 (column 3 replaces column 3[2] that was 5)

Contrary to the original simplex method, we stop as soon as there is a single negative cost:

Iteration 3: steps 2-5

xgz[xz X3 xs] CBT=[—1 -3 0]
110 3 -1 0
B=|2 3 0 Bl=|-2 10
2 11 | -4 1 1
[ 3 -1 0
v'=¢fBt'=[-1 -3 0]| -2 10|=[3 -2 0]
-4 11

2
@:cl—uTA1=—3—[3 -2 0] |1 :34(4)@ h=1

(x1 enters)

It is not necessary to compute all reduced costs, stop as soon one of
them is negative! J
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Iteration 3: steps 69

-1 0 2
1 0 3]
11 6

t:argmin{ % X X }:arg(l):l

5

MeMoCO Simple (for real)

~+ x> leaves

Al1] =1 (column 1 replaces column f3[1] that was 2)
lteration 4
XgZ[Xl )?3 Xﬁ:l Cg;z -3 -3 0]

3/5
u'=¢iB'=[-3 -3 0] -1/5
- |

52=C.‘2—UTA2:—1—[ —6/5 —3/5 0]

—

=c—u'Ay=0-]-6/5 —3/5 0]

[o

(._‘5 C5—UTA5:0—[*6/5 *3/5 0]
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We then arrive at the solution respecting all of the constraints, inverting at each iteration/step the

matrix:

Standard form (the one we solved by simplex method):

X1 3/5 -1/5 0 2
e x| % |=B1b=|-1/5 2/5 0 5 | =
X6 =1 01 6
1/5
° Ziyy = c'x* =@ [-3 -3 0] | 8/5 [|=-27/5
== 4 T ——
Optimal solution for the initial problem:
o Xf = 1/5
- ] X; — 0

® x3 =—X3 =—8/5
@ first constraint satisfied with equality (since@: 0)
@ second constraint satisfied with equality (since x; = 0)
. . . pe . . e
o third constraint satisfied with a slack of 4 (since x5 = 4)

G~z ~@1/5)

We will get to the “column generation methods”, since at each step we take only the column that we
need at a computation step. To get to that, we will see some basic concepts of duality, to be able to
solve a particular problem even having an exponential number of variables.
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6 REVIEW OF DUALITY IN LINEAR PROGRAMMING (5)

Given a linear programming problem in standard form, we want to provide a lower bound (LB) on the
possible values that the objective function can take in the feasible region and we the problem is
constrained to be not less than that variable (used to estimate the value of the o.f.).

T

(LP) z*=minz= c'x
st. Ax=0b
x>0

Definition: Lower Bound

Given a LP problem LP : min{c"x : Ax = b,x > 0}, let z* be the optimal
value of the objective function. A number ¢ € R is called a lower bound for
the problem if # < ¢ x for every x feasible for LP.

To obtain a lower bound, one can start from a vector u € R™ and impose the lower bound condition
from the equation Ax = b.
uTAx = uTh, Vx feasible

For u to represent a lower bound it is necessary that ¢ > u” 4, and this follows from the fact that the
value of the objective function cTx must be greater than the lower bound:

cTx > uTAx, Vx feasible

Since there is a lower bound, this means that both inequalities are correctly satisfied and get a lower
bound as close as possible to the solution:

Introduction to duality: a lower bound

i-b
(LP) z*=wminz= ¢'x T
st. Ax=b U's
>
I x>0 i

Definition: Lower Bound |
Given a LP problem LP : min{c"x : Ax = b,x > 0}, let z* be the optimal

value of the objective function. A number ¢ € R is called a lower bound for

the problem if ¢ < ¢ x for every x feasible for LP.

e x feasible for (LP) {
el
uTh=uTAx<c"x ~< 7

Given a vector u € R™, if ¢ > u” A then u' b is a lower bound for (LP) |

It therefore turns out to be important to have the highest possible LB, and this is done by appropriately
choosing the vector u. The choice of this vector can be seen as a problem of maximization, in which
the decision variables are contained in the vector u.
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6.1 DuAL PROBLEM DEFINITION AND DUALITY THEOREMS

Duality theory in linear programming can be viewed as a tool for checking the optimality of a feasible
solution. Given a linear programming problem in minimization form, the idea is to provide a lower
bound on the possible values that the objective function can take over the feasible region.

Problem (DP) is the dual problem of (LP). In this context, (LP) is called primal problem, and the pair of
problems (LP) and (DP) is called primal-dual pair. Note that there is:

- Adualvariable corresponding to each primal constraint
- Adual constraint corresponding to each primal variable

Problem: find u € R™ that makes the lower bound w as tight as possible
(DP) w*=maxw= u'b

st. uTA<cT
u free

Definitions

® (LP) is the primal problem
o (DP) is the dual problem of (LP)
@ (LP) and (DP) form a primal-dual pair of problems

e (LP) ha@ variables and (/7T gonstraints
e (DP) has@/ariables an constraints

@ each dual variable is associated to a primal constraint

@ each dual constraint is associated to a primal variable

A solution to the dual problem is a lower bound to the primal problem and vice versa a solution to the
primal problem is an upper bound to the dual problem.

Weak duality provides an essential bounding mechanism. It tells us that the value of any feasible
solution to the dual problem serves as a bound on the optimal value of the primal problem. This
allows us to see that bounds are strict and not separated.

Theorem (Weak duality)

If@ is a_feasible solution for (LP am@s a feasible solution for (DP), then
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This has significant practical implications for optimization algorithms, as it allows us to:

Establish quality guarantees on solutions

o Bycomparing the objective values of feasible primal and dual solutions, we can

determine how far a current solution is from optimality

o Thisis particularly valuable when working with large-scale problems where finding the
exact optimal solution may be computationally intensive

Develop stopping criteria for algorithms

o When the difference between primal and dual objective values becomes sufficiently

small, we can be confident that we are close to the optimal solution, allowing
algorithms to terminate efficiently

It’s impossible to have another feasible solution not being related to the actual solution bounds (note:
the conditions are sufficient):
Corollary (Optimality sufficient conditions)

Given a feasible solution % for (LP) and a_feasible solution_ii for (DP), if
cT% = " b then X is optimal for (LP) and ii is optimal for (DP).

Y-

It also holds the following:

Corollary (Unlimited case: sufficient conditions)
Given a primal-dual pair (LP)-(DP):

(i) if (LP) is unbounded, then (DP) is infeasible;
(ii) if (DP) is unbounded, then (LP)_is infeasible.

Strong duality, which states that the optimal values of primal and dual problems are equal under

certain conditions, has even more profound implications (also for column generation methods). In
every case the problem has an optimal solution, this value is optimal for sure. Since they are not
unlimited and feasible, there is not a gap between the solutions, so the solutions are the same.

Strong Duality \t

Theorem (Strong duality)

(LP) has an optimal solution x* if and only if (DP) has an optimal
solution u*. In this case, ¢ x* = u*"b.
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To complete the proof, we will use the simplex theory.

If PL has an admissible optimal solution, then it will have a basic one that can be derived by the (x*)
simplex method from which one can construct a vector u € R™ that is admissible and optimal
solution for the dual problem.

Proof (LP) = (DP):
@ (LP) has an optimal basic solution [xg | xy], A=[B|N], >0

Since x* is a solution found with the simplex, the reduced costs of in-base variables will be zero (cg =
0) and those of out-of-base variables will be greater than or equal to 0.

® Notice: €7 =[ef |ef]=[0|ch —cE B IN]>0
The simplex multipliers have got to be the feasible solution of the problem:

Strong Duality

as an optim
solution u*. In this case

Proof (LP) = (DP):

%

C,T

@ (LP) has an optimal basic solution [xg | x, =[B|N], >0
e Notice: &7 = ] >0
@ Conside (A CJ
i) u_A- ulA= u'[BTN]
[CBB 1B | uTN] ca bu™N b{ ca | egl @
”)CgB lb\:@:@ ‘U%-J \Lgv

@ u is dual feasible with same objective function value as x*
u 1s dual teasible with s

@ u is optimal (by Corollary 1) O

To make the transition from the primary problem to the dual problem, it is not necessary that the
primary problem be in standard form, the only important thing is to respect the constraints given the
relationships which logically appear between the actual constraints (below an example of primal/dual
problems couple):

Summary Uy & e T
¥ ™
(oP)
_Optimal Unbgunded | Infeasible
Optimal —{EPossible (and z* = w*) NO = | (No)
(LP)-Unbognded NO ¢< NO 0ssi
——— I Indeasi | NO == | Possible (E@ib@'}

* example:

X1+3X2
x1+x2>1

max uy + ux
st. up—wm=1
uy — u = 3
uy, up 2 0

—X1 — X2 2 1
x1, X2 libere
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We just need to change the definition of primal/dual problem, to maintain upper/lower bound
relationship between primal and dual problem.

The dual of an LP in general form Mua < € Mool

A=l UiA v
State the dual problem such that x20 & L
uT b AuTAx <.c"x ]
eg. Ax>b — u>0,
= A< b

+
Mo ¢ 26

('L>/(‘SC_7 VI—/C =2 C,{Tb

«w'z O

&7/% Z4&5

Consider another case in which in the primal problem we have free variables. We always need the
inequalities chain, so to make the same condition of before hold.

State the dual problem such that _——__

u’b M)
eg Ax>b —u>0, :b

el ¢ e “°5

AX@Q MTA;C
s s

M?A@@: e

<

=

-+

If we have two solutions, this means they are optimal for both problems —the following is the general
form for dual of an LP:

State the dual problem such that

uThb<uTAx<cTx

eg. Ax>b —u>0, x free > uTA=0b
Primal (minc’x) ‘ Dual (maxu’b) |
a,-Tx > b; up >0
a,-Tx < b; up <0
al x =b u; free
T
xj 20 u Aj <g
T
x; <0 u Aj > ¢
x; free uTAj = ¢j

@ read from left to right if the primal problem is max

e All the previous results hold for any dual pair
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We have to respect the chain of inequalities and use transformation according to the above table.
Note that the table reads from left to right if you have a primal problem in minimum form and from
right to left if you have a primal problem in maximum form.

A general example might be this one — now we apply the table of before:

Example 1
min @(1 +20x 9 7Pr|mal (minc"x) | Dual (maxu’b) |
st @3{1 —Xa >1 U3 b % B0
e X =20 ax(b- <0
X1 -2x3 =343, =
— Tx=b; uj libera
3X2 —X3 > 4%_ 3 g bt
& GO xz) > vAfy
X <0 xi <0 —— ujf‘.@ Cj
X3 x; free - =
max Uy +2u, +3u3  +4uy
o uy 2 0
u» =0
u3 free
Uy =10
2uy iy
—u; +u +3u; > 20
u, *2!)3 — Uy =10

There is a very special case using only free variables:

Sample application: find an optimal solution of special LPs

max —3x3 — x
s.t. x1+42x 4+ 327 x1+2x0+x3=7
2x1 +x + x4 =)20 2x1+x0 +x3 =20
X1, X2, X3 free uv+2w=-3
— 2ui+u =0
min 7w +20w ui +uw=1
s.t. wm+2 UZQ—3 —3x1—x=7Tu1 +20w
2w + wl=/0
u+ u = Xlzll—%X3 >$Aﬂ
ui, u> free x2=—-2— %xa
LSk werf

Hint: The presence of only equality constraints and only free variables suggests the direct application
of the primal-dual optimality conditions by setting up a system of linear equations containing the
constraints of the primal (equality) the constraints of the dual (free primary variables = constraints of
the dual equality) and the equality constraint between the primal objective function and the primal
objective function

1
As a result, we have infinite optimal solutions of type: x; = 11 — x3,x2 =—-2- 3 %3
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Now another example, where the main message is always the same: when we have a primal problem,
get the dual problem and solve it to optimality. The value of the o.f. is a bound for the feasible solution
of the other one.

Example 2
Meke X T2 +3x3 +4x ‘ Dual minc”x | Primal maxu”b |
s.t. 2X1 +Xx3 S 10C€ 7 a-Tx = bf = T m
=X Fg +3x =>20ay)—5— =
= T et )
X2 —23 —xa =0 cep—4—— —
@ >0 @ x = b u; free
e 55
Xo S 0 XJ. Z 0 UTAj S Cj
X3 libera X <0 u'Aj 2 ¢
- >0 x; free uTAj = §
_min 10wy +20uw,
[ ] >0
Lo <0
u3 free
2u — 1
Us -+U3 S 2
Ly *2U3 =3
3:'.12 — U3 2 4

6.2 PRIMAL-DUAL OPTIMALITY CONDITIONS

The strong duality theorem provides optimality conditions: x* and u* are optimal solutions for the pair
of problems if and only if (&):

- x"isprimalfeasible,soAx* > bAx* >0
- u*isdualfeasible,sou*TA<cTAu*>0
- Strong duality holds, so cTx* = u*Th

One can then think of directly applying the primal-dual optimality conditions by setting up a system of
linear equations containing the constraints of the primal (equalities), the constraints of the dual (again
the equalities) and adding as the last constraint the equality of the functions objective.
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More formally, one can rewrite the optimality conditions as the following:

Optimality conditions: complementarity

Theorem (Orthogonality conditions)

x is primal feasible
x and u optimal for u is dual feasible
primal and dual (resp.) b uT(Ax—b)=0
(cT—uTA)x=0

uT(Ax — b) = Z ui(a/ x — b)) =0 (c" —u"A)x = Z (—uTAj)x;=0
i=1 j=1

Theorem (Complementary slackness conditions)

x Is primal feasible
x and u optimal for u is dual feasible
primal and dual (resp.) = ui(alx—b;) =0,|¥]i=1,...,m %
(cjfuTAj)xj-zo.,jzl,...,n

vl

Keeping in mind that for problem eligibility, all factors of the summations must be = 0, we have that at
the optimum it holds:

wilala —b) =0 ¥Yi=1...m
(ej — ul A — ;=0 ¥ji=1...n

These conditions are met for each primary/dual constraint/variable. That is, two solutions x and u are
optimal if and only if:

e a. Each positive primalvariable x; > 0 implies the saturated dual constraint uTAj =¢
because (2) must be worth 0.

e b. Everyloose dual constraint uTAj < ¢j implies the null primal variable x; = 0 because 3.8
must be worth 0.

e c. Every positive dual variable u; > 0 implies the saturated primal constraint aiTx = b; because
(1) must be worth 0.

e d. Any loose primal constraint al-Tx > b; implies the null dual variable u; = 0 because 3.7 must
be worth 0.

Because of these conditions, we can go and check whether a given solution is optimal or not by trying
to construct a dual solution that is complementary to the given primal one.

Cx=«h
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The orthogonality conditions state that for optimal solutions:

1. uT(Ax-b) =0 This condition means that the dual variables (u) must be orthogonal to the slack
in the primal constraints (Ax - b).

2. (cT-uTA)x =0 This condition means that the primalvariables (x) must be orthogonal to the
slack in the dual constraints (cT - uTA).

Meanwhile, the complementary slackness conditions are powerful because they provide a way to
verify optimality: if we have feasible primal and dual solutions that satisfy complementary slackness,
those solutions must be optimal and one of them has to be zero when the other one has a value.

6.3 THE SIMPLEX METHOD AND DUALITY

There is a connection between the simplex method and duality, because:

- During simplex iterations:

o The multipliers give a dual solution (though not necessarily feasible)

o Complementary slackness is always satisfied

o Negative reduced costs indicate which dual constraints are violated
- Atoptimality:

o Allreduced costs are non-negative

o The multipliers give a feasible dual solution

o Both complementary slackness and feasibility are satisfied

The simplex method and duality

(LP) min c'x (DP) max u'b
st. Ax=b st. uTA<cT
x>0 u free

At each iteration of the simplex method

XB

@ basis B, basic solution x = { < } multipliers u” = ¢ B!
N

@ x and u satisfy complementary slackness conditions:
» uT(Ax — b) =0, by primal feasibility
(7= uTAyx = (| F1- I | | 2] -
N
CBTXB -i—c,z,—xN - chlexB —ch*INxN = chB +0-— chB —-0=0

T

0 G<0& ¢— CEB’IAJ- <0& uTAJ- > ¢ & u' is not feasible

Moreover, at the last iteration

OV >0 —ciB 1A >0 uTA<¢ & u' is feasible

Notice: a negative (resp. non-negative) reduced cost of a primal variable
corresponds to a violated (resp. satisfied) dual constraint

So, at each iteration:

- We have a basis and a basic solution derived by simplex multipliers
- Slackness holds because of primal feasibility, satisfying the linear system
- Anegative reduced cost means dual constraint is violated
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- Atoptimality (last iteration), all reduced costs are hon-negative, all dual constraints are
satisfied and multipliers from a feasible solution

Let us consider the (partial) proof seen for the strong duality theorem. We have seen that given an
admissible solution of the basis and the corresponding multipliers of the simplex u” = C,gB‘1 the
condition “reduced cost of a variable with respect to the basis is nonnegative” is equivalent to saying
“the corresponding dual constraint is satisfied by the dual solution obtained from the multipliers.” In
fact, the definition of reduced cost traces the definition of the dual constraint:

Gi=c;—cpB A >0 ¢ —u' A, <00 A < ¢

Moreover, it can be seen that the multipliers themselves, viewed as solutions of the dual problem, are
always, by construction, in complementary discards with the current admissible basis solution. In
fact, considering that the problem in standard form has only equality constraints, the condition

u” (Ax — b) = 0 comes from the feasibility of the primal solution. For the condition x; = B~1b and

xr = 0 in the basic solution, we have:

(¢F —uTA)x = ([;;3|(£] raTIB|F]}[;r'B rE| = :::}:,:!:B f ff}{:.'l';,' ::};B_]B.J'B f‘};B_lF,I';: =

= chap+0—chaep —0=0.

In other words, x and u are a pair of primal-dual solutions in complementary slackness and this holds
for each simplex iteration. We can therefore interpret the simplex in two ways:

- As amethod that, at each step, determines an feasible primal solution and iteratively tries to
make it optimal

- As amethod that, at each step, determines a dual solution (the multipliers) in complementary
scraps with a primal admissible solution and iteratively tries to make it dual admissible

In each case, at the end of the simplex we will have in hand a primal feasible solution and a dual
feasible solution to each other in complementary scraps (and thus optimal primal and dual
respectively).

- While running the simplex method, on the other hand, we will always have a pair of primal-dual
solutions that are in complementary slackness, but with only the primal admissible, and thus
the complementary slackness theorem does not apply except at the end of the simplex, when
all reduced costs are non-negative (which is equivalent to saying that the multipliers are a dual
admissible solution)

The reduced costs in simplex directly correspond to dual constraints:

- Negative reduced cost = violated dual constraint
- Non-negative reduced cost - satisfied dual constraint
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6.4 DUALITY EXAMPLE AND PROBLEM MODIFICATIONS

Let’s go through a complete example so you can understand how it works. Consider the following
problem:

min 2x1 + 3x2

st. 3ry 19 = 11 ()
T2 =2 (ug)
Ty =1 (ug)
T, x2 =)

We want to check whether the solution x = (3,2) is optimal by applying the complementarity
conditions.

- As afirst step, itis necessary to test whether the solution is admissible by going to substitute
within the constraints the values of the solution
- Ifall the constraints are met, the solution is admissible
- Forthe solution to also be optimal, it is then necessary to find a complementary solution for
the dual problem:
max 11uy + 2u2 + ug
st Jup +uy < 2
uy +ug <3

Uy, u2,uz = 0
We then need to find equations to put into system to find the dual solution.

- The constraint 3x1 +x2 = 11 is already at equality with the solution x1 =3 and x2 = 2, so it gives
no additional information

- Alsox2=2isalready equal withx2 =2

- Theconstraintx1 = 1 is not at equality and therefore, to make the complementarity condition
satisfied, the dual variable associated with the constraint must be zero.

o Thereforelderive u3=0

- Both primary variables are strictly greater than 0 and so | can impose the two equations

associated with the variables at 0: 3u1 +u3=2andul+u2=3

The final system of equations | obtain is:

g =0 up = 2/3
Jup +ug =2 da cui ricavo us = 7/3
y +us =3 ug =0

We’re not done yet, because to make sure it is optimal, we have to check if it’s feasible. In this case it
is, and therefore, that both primal/dual solutions are admissible and are complementary to each
other, then they are also both optimal.

Suppose we have found the optimal solution of a primal-dual problem with the procedure just seen.

Written by Gabriel R.



135 MeMoCO Simple (for real)

It may happen that the practical problem behind the model changes and it is necessary to find an
optimal solution for the new problem. Obviously, one does not want to re-optimize the problem, but
one wants to find out whether a solution for the new model is optimal. Suppose that the variable x3 is
added to the previous problem and that it appears in the objective function with coefficient 2.

min 2x + 3irs + 215

st. 3y + w9+ 213 > 11 (uy)
x2 =2 (u2)
r1+x3>1 (u3)

Iy, To,xky =0

The admissible solution given for this variant is the same as the previous one with x3 =0. Since a
variable was added to the primary problem, the dual obtains a new constraint:

max 11wy + 2us + ug
.t Jup +ug < 2

up +ug = 3

2uy +ug < 2

., U2, ug = 0

The previous dual solution does not change and remains feasible because it also satisfies the new
constraint.

In this case | also know that they are optimal, because the dual solution was constructed in a
complementary way, and the only thing that remains to be verified is that the complementarity also
holds for the newly introduced primary variable-dual constraint pair, which is satisfied because in the
solution x3 =0.

It may happen, however, that the dual solution becomes infeasible. For example, if we add another
variable x5 to the problem:
min 2x + 3aa + 2xg + 5.5x;
s.t. 3oy + a2+ 203 + 2o05 = 11 (uy)
r9+ 2w =2 (ug)
ry+xg+ 225 > 1 (ug)

Iy, &9,y =0
The dual problem becomes:

max 11wy + 2us + uy
st Juy +ug <2
] +uz < 3
2y +ug < 2
21y + 2up + 2,3 < 5.5

iy, U, g = 0

If in the starting optimal primal solution we also add x5 = 0 we still get an optimal solution admissible
in complementary rejections with the dual one. The problem is that because of the new constraint, the
dual solution is no longer admissible. The only thing that can be done in this case is to perform a new
optimization. So: if a new variable (column) gets added to primal problem x, the solutions remains
optimal iff the dual solution u satisfies the dual constraint.
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The fundamental insight is:

- Adding a column = Adding a dual constraint
- Ifdual solution violates new constraint = Column has negative reduced cost
- This means the column could improve solution

This leads naturally to column generation (which is the next theory module) because, instead of
having all possible columns/variables:

- We work with a subset

- Use current dual values (u) to price potential new columns
- Only generate columns with negative reduced costs

- These are columns that could improve the solution

There is a specific example at the end of the slides (not treated in lessons — written by me below):

Sample application

A company needs 11 kilograms of chromium, 2 of molybdenum and 1 of
manganese. Two kinds of scrap steel can be purchased: one ton of the
first type contains 3 kilograms of chromium and 1 of manganese, and
costs 2000 euros; one ton of the second type contains 1 kilogram of
chromium and 1 of molybdenum, and costs 3000 euros. Currently, the
company purchases 3 and respectively 2 tons of first and the second type
of scrap steel.

@ Verify that the current strategy is the cheapest one.

@ Check whether the optimal strategy may change after the availability
of two new types of scrap steel. One ton of the third type contains 2
kilograms of chromium and 1 of manganese, and costs 1500 euros;
one ton of the fourth type one contains 2 kilograms of chromium and
1 of molybdenum, and costs 4000 euro.

© Check whether the optimal strategy may change after the availability
of a new type of scrap steel containing 2 kilograms of chromium, 2 of
molybdenum and 2 of manganese, and costing 5500 euro per ton.

Let's define our variables: x1 = tons of type 1 scrap steel x2 = tons of type 2 scrap steel
We can write the constraints based on the requirements:

e Chromium: 3x1 +x2 =11 (need at least 11kg)
e Molybdenum: x2 = 2 (need at least 2kg)

e Manganese: x1 =1 (need at least 1kg)

¢ Non-negativity: x1,x2=0

The objective function (total cost) to minimize is: min z=2000x1 + 3000x2

This is a linear programming problem. To solve part 1, we need to first verify if the current solution
(x1=3, x2=2) is optimal.

Let’s rewrite this as a linear program and solve it using duality theory:
min z =2000x1 +3000x2 s.t. 3x1 +x2=11 (u1)x2=2 (u2)x1=1 (u3)x1,x2=0

The dual problemis: max 11u1 + 2u2 + u3 s.t. 3u1 +u3< 2000 u1 +u2=<3000u1,u2,u3=0
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For x1=3, x2=2 to be optimal, we need to find dual variables that satisfy:

1. Dualfeasibility
2. Complementary slackness conditions

The current solution x1=3, x2=2 satisfies all primal constraints:

e Chromium:3(3)+2=11=>11
e Molybdenum:2=2
e Manganese: 321

Let's try dual values: u1=500, u2=2000, u3=500 These satisfy: 3(500) + 500 = 2000 500 + 2000 = 2500 <
3000

The objective values match: Primal: 2000(3) + 3000(2) = 12000 Dual: 11(500) + 2(2000) + 1(500) =
12000

Since we found feasible dual variables that make the objectives equal, the current solution is indeed
optimal. This verifies that the current strategy is the cheapest one.

For parts 2 and 3, we use similar analysis with the new variables/constraints:

Part 2: Adding two new variables makes new constraints but doesn't change optimality of current
solution because:

e Fortype 3 scrap (2kg Cr, 1kg Mn for 1500€), this gives better cost per unit but adds new
capacity. But optimal dual values show current solution remains optimal

e Fortype 4 scrap (2kg Cr, 1kg Mo for 4000€), cost is higher than type 2 scrap so won't improve
solution

Part 3: The new type 5 scrap (2kg each of Cr, Mo, Mn for 5500€) does change optimal strategy because
it can satisfy requirements with fewer tons needed, leading to lower total cost.

Therefore:

e Current strategy is optimal
e Strategy doesn't change with types 3 and 4 available
e Strategy does change with type 5 available
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Side note: the problem was presented a bit differently inside of Italian notes (here page 8 and
onwards).

To meet the demand for special steels, a manufacturing company needs 11 quintals of chromium, 2
quintals of molybdenum and 1 quintal of manganese. The market offers packages of two types. the
first contains 3 kilograms of chromium and 1 of manganese and costs 200 euros; the second contains
1 kilogram of chromium and 1 of molybdenum and costs 300 euros.

Currently, the company purchases 300 packs of type 1 and 200 packs of type 2. It is desired to:
1. verify that the company implements an optimal procurement policy;

2. assess whether the policy should be changed due to the availability of a third and a fourth type of
packages on the market. The third contains 2 kilograms of chromium and 1 of manganese and costs
200 euros. The fourth contains 2 kilograms of chromium and 1 of molybdenum and costs 400 euros.

3. consider whether the policy should be changed as a result of the availability on the market of a fifth
type of packaging, containing 2 kilograms of chromium 2 of molybdenum and 2 of manganese, at a
cost of 550 euros.

Note: the company is interested in knowing how the optimal supply policy is composed only
approximately and expressed in hundreds of packages. For this reason, the model can be expressed
by continuous variables and duality theory in linear programming can be applied.

Solution track: we first write the model of the problem. The variables are x;: number of hundreds of
packages of type i = 1..2 to be purchased. Since we are interested in an approximate solution, we can
consider these variables continuous, rather than integer, as their nature would suggest.

Solving step 1 simply means checking the optimality of the solution x; = 3,x, = 2. Theresultis
positive: the policy is optimal.

To solve point 2, consider that the new opportunities result, from the primary point of view, in two new
variables. From the dual point of view, we have two new constraints (2u; + u3z < 2,2uq + u, < 4). It
should be noted that, given the addition of more constraints to the dual problem, the optimal solution
of the dual problem itself cannot improve but remain the same (if it does not violate the new
constraints) or get worse (if the old optimal solution violates the constraints). Thus, with the addition
of the two new dual constraints, two cases can occur:

- (a) The constraints are verified by the optimal dual variables obtained in Step 1
o Thenthe optimal dual solution does not change and, due to strong duality, neither
does the optimal solution of the primal, i.e., the addition of two new alternatives does
not affect the optimality of the policy currently adopted by the firm
=  We achieve the optimal value of the objective function even if values of new
variables remain at 0
= |t can be shown inthis case that, if the dual constraints are satisfied, we are in
the presence of a primary admissible solution and a dual admissible solutionin
complementary scraps, thus optimal solutions. You can find this in the Italian
notes above quoted
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- (b) The constraints are not verified by the optimal dual variables obtained in step 1. So the
optimal dual solution changes and, in particular, having added additional constraints, it gets
worse, i.e., it decreases (dual objective function of max)

o Again due to strong duality, the value of the objective function of the corresponding
primal (the one with two new variables) will be equal to the new optimal value of the
dual, thus lower than before.

o As aresult, the current policy could be improved by taking advantage of the new
packages offered by the market

= As alternative proof we would be in the presence of feasible primal solution in
complementary slackness with an unfeasible dual solution, i.e., the two
solutions are not optimal for their respective problems

Result: case (a).

The solution of point 3 is similar to point 2, with the outcome of having the policy adopted be not
optimal and should be changed.
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7 COLUMN GENERATION METHODS (6)

Let’s start by considering the following problem (tondini di ferro —iron rods):

A company has a stock of iron rods with diameter 15 millimeters and length 11 meters
and cuts the rods for its customers, who require different lengths. At the moment, the
following demand has to be satisfied:

item tvpe | length (m) | number of pieces required

1 2.0 48
2 4.5 35
3 2.0 24
4 2.0 10
D 7.0 8

Determine the minimum number of iron rods that should be used to satisfy the total
demand.

7.1 AN INTERESTING PROBLEM: CUTTING RODS — MODEL AND SOLUTION

We have several ways of cutting this; we want to decide “how” to cut all of these pieces and how
many rods we want to cut with such technique. There are as many ways as the types of pieces to be
cut here, but also industrially we may have a limited number of cuts to be executed.

- The problem structure presents a fundamental challenge typical of column generation
applications: the number of possible cutting patterns (ways to cut the rods) is extremely large
and impractical to enumerate explicitly

- For example, even with just these five different lengths, there are numerous possible
combinations of cuts that could be made from an 11-meter rod while satisfying various piece
requirements.

The real value of this example lies in how clearly it demonstrates the core principle of column
generation: rather than dealing with an enormous number of variables upfront, we can work with a
manageable subset and generate additional variables (columns) only when they have the potential to
improve our solution.

A company has a stock of iron rods with diameter 15 millimeters and

length 11 meters and cuts the rods into smaller pieces for its customers,

who require different lengths. At the moment, the following demand has
to be satisfied:

item type | length (m) ] number of pieces required

1 2.0 48  —— .. N
2 4.5 35 2
3 5.0 24 2
4 55 10 =
5 7.5 8 =X
Determine the minimum number of iron rods that should be used to
ksatisfy the total demand. " y ((_?
N —— — #~——p 3C
3 LE 'n ! 2 [\ 31!—\ g= S
A
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A possible model for the problem, proposed by Gilmore and Gomory in 1960 (see here) is the following
— consider there are so many ways to solve this problem, exponential even! You do not have enough
memory to create all of that for sure.

Linear programming formulation

I ={1,2,3,4,5}: set of item types;
@ W: rod length (before the cutting)

Lj: length of item i € /

R;: number of pieces of type i € | required

J: set of patterns to cut a single rod into pieces

Njj: number of pieces of type i € I in pattern j € J

xj: number of rods that should be cut using pattern j € J

min ij
jed
£ ZN,J‘X‘,' > R V iel
jed
x; € 4y Y jed

|J| can be huge (all the possible ways of combining small lengths L; into W)

The modelis very elegant since we do not worry about the feasibility constraints of the cuts, since the
matrix of possible combinations only contains the valid ones. There are still other things to note:

- Itassumes the availability of the set J and the parameters N;;
- Inorder to generate this data, one needs to enumerate all possible cutting patterns
o lItiseasytorealize that the number of possible cutting patterns is huge, and therefore
direct implementation of the above model is unpractical for real-world instances
- So, two problems - integer variables and matrix of the cuts which can be too big!

We remark that it makes sense to solve the continuous relaxation of the above model.

- Thisis because, in practical situations, the demands are so high that the number of rods cut is
also very large, and therefore a good heuristic solution can be determined by rounding up to
the nextinteger each variable x; found by solving the continuous relaxation

- Moreover, the solution of continuous relaxation may constitute the starting point for the
application of an exact solution method (for instance, Branch-and Bound — next module)

We therefore analyze how to solve the continuous relaxation of the model (x; € R*). Such a solution

can be constructed as follows:

- Consider single-item cutting patterns, i.e., |I| configurations, each containing N;; = |~| pieces

of type i
o Inwords: given a rod, produce only a type of piece and get the max possible

R; , . . . ,
- Setx; = N—‘for pattern i (where pattern i is the pattern containing only pieces of type i)
ii

o Inwords, the number of times a pattern is applied is given rounding by excess the ratio
between piece request and number of pieces produced by the schema

Written by Gabriel R.


https://www.researchgate.net/profile/Ralph-Gomory/publication/266478800_A_Linear_Programming_Approach_to_the_Cutting_Stock_Problem_I/links/5759753708aec91374a372d2/A-Linear-Programming-Approach-to-the-Cutting-Stock-Problem-I.pdf

142 MeMoCO Simple (for real)

So: start from a relaxed version of the problem using a subset of the cutting patterns, making a good
choice so to make sure there exists a feasible solution and cut off integrality constraints, since in
reality we might have production waste.

The same solution can be obtained by applying the simplex method to the model (simple, since it’s
without integrality constraints), where only the decision variables corresponding to the above single-

item patterns are considered (restrict to a subset of J). Here the relaxed version solved using simplex:

min 1] + Iy + Iy + Ty + T3
s.t. by = 48
2 > 35
2y > 24
2y = 10 0.2
x> 8 0.5
Ty I Ty T4 x5 = 0 u= (C%B‘I)T =1 05
0.5
" T " " 9.6 '| [ 50000 " 1.0
Ty 17.5 02000
In fact, o = | x3 | = | 12.0 |corresponding to the basis B= | 0 0 2 0 0
Ty 5.0 00020
Ty 8.0 00001

Consider now a new possible pattern (number 6), containing one piece of type 1 and one piece of type
5. We ask ourselves: does the previous solution remain optimal if this new pattern is allowed? As we
saw, we can answer a question like this by using duality or simplex theory (previous solution holds real
values — hence not allowed - let’s try to add then a pattern to try taking a better solution!)

- Recallthat at every iteration the simplex method yields a feasible basic solution
(corresponding to some basis B) for the primal problem and a dual solution (the multipliers)
that satisfy the complementary slackness conditions

o The dual solution will be feasible only at the last iteration

- The new pattern number 6 corresponds to including a new variable in the primal problem, with
objective cost 1 (as each time pattern 6 is chosen, one rod is cut) and corresponding to the
following column in the constraint matrix:

&
I
= e

[

This variable creates a new dual constraint. We then have to check if this new constraint is violated by
the current dual solution (u”), i.e., if the reduced cost of the new variable with respect to basis B is
negative. The new dual constraint and also the dual solution of relaxed problem are the following:

Lty + Ous 4+ Ouy 4+ Oug + lus; < 1.

The current dual solution associated to B is u” =¢fB'=[02 05 05 05 1].

Considering the dual solution corresponding to the current optimal solution u = ch‘l, we get 0.2 +
1 =1.2 > 1, the new constraint is violated. This means that the current primal solution (in which the
new variable is x, = 0) may not be optimal anymore (although it is still feasible).
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We can verify that the fact that the dual constraint is violated corresponds to the fact that the
associated primal variable has negative reduced cost:
H
0

G=c—u"A;=1-[02 05 05 05 1][0|=-02

Itis then convenient to let x4 enter the basis, since it means there is room for improvement for the
primal relaxed solution. To do so, we modify the problem by inserting the new variable:
min r o+ TIas + T3 + r4 + Ts + Tg

s.1. -r}.'l'] -— &g
2‘1'3

48
35
24
10
3
0

2.!'.‘3
2‘1',]
L

I I'g Iy €Iy Iy g

IV IV IV IV IV IV

If this problem is solved with the simplex method, the optimal solution is found but restricted only to
patterns 1,...,6.

- Ifanew pattern is available, one can decide whether this new pattern should be used or not by
proceeding as above (so: continue until an optimal relaxed solution not improvable is found)

- However, the problem is how to find a pattern (i.e., a variable; i.e., a column of the matrix)
whose reduced cost is negative (i.e., it is convenient to include it in the formulation)

- Problem is: which columns to choose, since the set is very big and those are not defined
explicitly (= not immediate to find a variable respecting this logic)

- Notonly is the number of possible patterns exponentially large, but the patterns are not even
known explicitly! The question thenis:

Given a basic optimal solution for the problem in which only some variables
are included, how can we find (if any erists) a variable with negative reduced
cost (i.e., a constraint violated by the current dual solution)?

This question can be transformed into an optimization problem: in order to see whether a variable with
negative reduced cost exists, we can look for the minimum of the reduced costs of all possible
variables and check whether this minimum is negative:

min ¢=1—u'z

s.t. 2z 1s a possible column of the constraint matrix.

Recall that every column of the constraint matrix corresponds to a possible cutting pattern, and every
entry of the column says how many pieces of a certain type are in that pattern. In order for zto be a
possible column of the constraint matrix, the following condition must be satisfied:

v = "’lfl
2 € 7,

ZLE:J <W
iel
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Then the problem of finding a variable with negative reduced cost can be converted into the following
ILP problem - basically, we transformed the solution into a partial problem, where we solve a different
subproblem using the knapsack problem:

min ¢ =1— E Wi i

il
s.t. Y Lz £ W

icl "
I
: € Z

which is equivalent to the following (we just write the objective in maximization form and
ignore the additive constant 1):

Max E Wiz

iel

sty Lz < W
il
z € Zlfl
The coefficients z; of a column with negative reduced cost can be

found by solving the above integer knapsack problem.

In our example, if we start from the problem restricted to the five single-item patterns, the above
problem reads as:

max 0.2z + 0.

Hzo 4+ 0hzs + 0.5z + 25
st. 20z + 45z 4 50z 4+ 55z 4+ T7T5Hz; < 11
21 2 23 24 Zs € Z|
and has the following optimal solution: z' = [ 10001 -| This correspond to the

pattern called Ay in the above discussion.

The procedure described above can be generalized to an algorithm for one-dimensional cutting-stock
problems, where the strategy is based upon continuous relaxation and application of a rounding
heuristic.

Problem 1 (One-dimensional cutting-stock problem): given
e a set of item types I,
o for every item type it € I, its length L; and the number of pieces to be produced R,
o the length W of the starting objects to be cud,

find the minimum number of objects needed to satisfy the demand of all item types.

The problem can be modeled as follows:

min E T

qed

jed

r, € Z, ¥ jelJ
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where:

o J: set of all possible cutting patterns that can be used to obtain item types in [
from the original objects of length W

¢ N0 number of pieces of type ¢ € [ in the cutting pattern j € .J .
¢ 1, number of original objects to be cut with pattern j € .J .

An algorithm for this problem is based on the solution of the continuous relaxation of
the above model, i.e., the model obtained by replacing constraints x; € Z,%j € .J with
constraints x; € R, Vj € J.

Since |.J| can be so large as to make the enmumeration of the patterns unpractical, the
following algorithm can be used:

7.2 ALGORITHM FORTHE 1D-CSP

Step 0 - Initialization

Choose a subset J' of the cut patterns, such that the problem admits solution (feasible). An example
of a subset is given by all the mono-cut schemes (e.g., card(I) for single-item patterns).

Step 1 -Solving the master problem

Solve the master problem, considering only the previously defined subset of patterns. This results in
an primal optimal solution x* and a corresponding optimal dual u* solution, which isin
complementary slackness with x*. This process can be done by simplex method.

min E T

jed!
st. Y Nyx; > R ¥ i€l
Jjed’

rj € Ry V jelt
thus obtaining a primal optimal solution z° and a dual optimal solution u® such that z°

and u”* satisfy the complementary slackness condition (this can be done with the simplex
method).

Step 2 - Solving the sub-problem (slave problem)

Solve the slave problem (using the simplex method, to solve the primal problem) for determining the
column to be introduced (i.e., the optimal solution z* — a dual solution). The problem has variable
card(I) and only one constraint, thus obtaining the optimal solution.
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Step 3 - Optimality test (and heuristic solution to the starting problem)

If Yiesuiz;i < 1,then STOP: x* is an optimal solution of the full continuous relaxation (including all
patterns in J). Otherwise, update the master problem by including in J' the cutting pattern y defined by
N;, = z; (this means that column z* has to be included in the master problems constraints matrix)
and go to Step 1.

Finally, to go from the optimal solution of continuous relaxation x* to a heuristic solution (i.e., not
necessarily optimal but hopefully good) of the original problem (with integrality constraints), is
possible, alternatively to:

- Round up by excess the entries of x* (this is a good choice if these entries are large: 765.3 is
not very different from 766...); note that rounding down is not allowed, as we would create an
unfeasible integer solution

- Apply an ILP method (for instance Branch-and Bound) to the last master problem that was
generated; this means solving the original problem (with integrality constraints) restricted to
the only “good” patterns (those in J') generated by the solution of sub-problems

In either case you lose the guarantee of the optimality of the solution, but you still get a reasonably

good solution.
Important remark

x* is optimal for the continuous relaxation whereas

X may be not optimal for the original problem

7.3 COLUMN GENERATION METHODS FOR LP PROBLEMS

The idea developed above for the one-dimensional cutting-stock problem can be applied to more
general LP problems (NOT integer, at least directly) whenever it is not possible or convenient to list
explicitly all possible decision variables. This happens because of simplex theory.

Consider the following generic problem:
(P)min ¢’ x

st. Az =b
x>0
such that the number of variables/columns (n) of A is very large or not known a priori, the algorithm
becomes the following — let (D) be the dual problem of (P):

(D) max b
st. uTA < T
u free

Step 0: Initialization

Find explicitly a (small) subset of columns of A such that, if only these columns are considered, the
problem has a feasible solution. Let E € R™*9(q « n) denote this submatrix of A s.t. it’s composed
only by the selected subset columns and let xg, cg be the corresponding vectors of variables and
costs in the objective function. It’s important the problem related to E is limited and feasible.

e A = [E|H] (Explicit/Hidden columns)
e 3X,Ex=1h
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Step 1: Solve the Restricted Master Problem (RMP) obtaining x,’}”,uM

(RMP) min c¢fxe (RD) max u'b
st. Exg=b st: wE £ g
xg >0 u free

Theoretical remark. Consider the partition A = [ E|H ] (Explicit, Hidden

TE } ec” = cf|cf; |. Note that the

columns) and the corresponding x = [ .
Ty

Ty =1y
xry =01
(as all constraints are satisfied). Furthermore, u = u™ is a (not necessarily
feasible) solution for (D): the number of entries of u is equal to the number of
constraints of both (/) and (M P). Finally, v and x satisfy the complementary
slackness conditions with respect to the initial pair (P)-(D). To see this, note
that

ertended solution x = [ ], is feasible for the initial problem (P)

M

x
(" —u" Az = ([eh | ch]—u'[E | H]) [ mf{ ] = {CE—'U,TE):I:EJr(cgfuTH)ifr_/:

=0

(ch — (T E)ad +(ch — (W™)YTH) - 0=0-28 +0=0,

~
=0

as ) and u™ satisfy the complementary slackness conditions (because they
are optimal for (RM P) and its dual).

A pair of feasible solutions and optimal primal-dual for MP is obtained, for example, using the simplex
method.

Step 2: Solution of the slave problem (sub-problem for the generation of a new column)

Find one or more vectors z € R™ satisfying the following conditions:

(i) the entries of z are the coefficients in the constraint matrix of a variable z; (i.e., z
is a possible column A; of A) whose cost is ¢;;

(i) ¢; — (uM)Tz < 0.

Theoretical remark. The above conditions identify the existence of a constraint
in the original dual problem (D) that is violated by the solution u = u™. Note
that (D) contains also all the constraints of the dual of (RMP), corresponding
to the variables in 2. These constraint are of course satisfied, as « is feasible
for the dual of (RMP).

To ensure the efficiency of the algorithm, this step needs to be performed quickly, and to limit the
number of iterations, one may choose to generate more than one column at a time. In addition, the
algorithm to be applied varies from problem to problem.

Written by Gabriel R.



148 MeMoCO Simple (for real)

Step 3: Optimality test

M
If no vector z from the previous step exists, then STOP: x = [xg ] is an optimal solution of the initial

problem (P). If no new columns are found, this means there are no dual constraints violated and also

the dual solution is optimal.

rp =1y
xpg =071
dual pair of solutions for ( P)-(D) satisfying the complementary slackness con-
ditions. The fact that the slave problem is infeasible means that no constraint
of (D) is violated, i.e., u = u" is feasible for (D). We then have pair of feasible
solutions for (P)-(D) satisfying the complementary slackness conditions. By
the strong duality theorem, x and u are optimal for (P) and (D).

M

Theoretical remark. As we saw, © = and v = u™ are a primal-

Step 4: Iteration

Update the master problem by including in matrix E one (or more) columns generated at Step 2; also
update the corresponding costs in x; and cg. Go to Step 1 (so if new columns, add them back to the
original matrix). Note that as the algorithm execution continues, the problem (MP) may become too
complex, so you may choose to maintain a pool of active columns.

Theoretical remark. As we saw, violated dual constraints correspond to vari-

ables with negative reduced cost; thus these variables are worth being included
in the problem to improve the objective value.

7.4 IMPLEMENTATION ISSUES — CONVERGENCE

The critical part of the method is Step 2, i.e., generating the new columns (solving slave problem). It is
not reasonable to compute the reduced costs of all variables x; for j = 1,..., n, otherwise this
procedure would reduce to the simplex method. In fact, n can be very large (as in the cutting-stock
problem) or, for some reason, it may not be possible or convenient to enumerate all decision
variables.

- ltisthen necessary to construct a specific column generation algorithm for each problem;
only if such an algorithm exists (and is efficient), can the method be fully developed

- Inthe one-dimensional cutting stock problem we transformed the column generation
subproblem into a reasonable ILP (Branch and Bound or dynamic programming). In other
cases, the computational effort required to solve the subproblem may be so high as to make
the full procedure unpractical (in general NP-Hard or just inefficient overall)

A column generation algorithm considers, at each iteration, a primal-dual pair of feasible solutions. In
order for Step 1 to be able to find such a pair, the master problem needs to be always feasible and
bounded.

- Atthefirstiteration feasibility can be achieved by taking any feasible solution for (P) and
including in E only the columns corresponding to variables that take a strictly positive value in
this solution

- Atthe next iterations, if the method adds new variables, the new master problems will be
feasible because the initial variables will still be included in the model. Moreover, to ensure

Written by Gabriel R.



149 MeMoCO Simple (for real)

boundedness, one can impose box constraints, i.e., constraints of the type Xj < M,VjeEE
(where M is a sufficiently large constant)

- Inmany cases such a value of M can be easily determined (for instance, in the rod cutting
problem itis easy to find a safe upper bound M on the number of rods needed) and introducing
them step by step to Step 4, boundedness is guaranteed

The convergence rate of column generation methods is guaranteed by the theory of the simplex
method, provided that the column generation subproblem can be solved by an existing exact
algorithm. However, from the practical point of view, convergence might be slow for several reasons
(we only mention some of them below).

- Oneissueis the following: if, at Step 4, a single variable is introduced, many iterations may be
needed before including all variables needed in an optimal solution of the original problem. To
overcome this problem, when possible include and find more than one new variable at every
iteration (so, find more columns at Step 2 to insert them into MP into Step 4)

- Anotherissue is the fact that, after some iterations, problem (RMP) will contain a large number
of variables, and therefore solving (RMP) may become very hard. One way of overcoming this is
the creation of a pool of non-active variables among all the variables introduced so far

In other words, the variables whose value has been zero for several iterations can be eliminated from
the model but kept in a pool. However, when doing this, one has to ensure that the elimination of
some variables does not make the problem infeasible.

- Ifthis approach is adopted, at every iteration one can check if one of the columns already
generated but currently removed has negative reduced cost; only if this is false, a new variable
will be generated

- Some other problems, not covered here, are known as instability, tailing-off, head-in etc.:
dealing with this aspects is fundamental for the implementation of efficient column generation
methods (stabilized column generation)

The basic notion coming from the theory is the fact if we have integer variables, this does not work.
Even if we solve it to optimality with integer variables, we only solve the subproblem. To summarize:

@ device a suitable column generation subproblem: it should be
sufficiently efficient (the efficiency “mainly” depends on the slave
problem)

e convergence: guaranteed by the simplex theory as long as, at each

iteration, the RMP is feasible and bounded (e.g., box constraints
xi < M,j€E)

@ improve convergence rate:
» more that one variables per iteration
» remove ‘non-active” variables
» stabilized column generation (advanced topic: mitigate head-in,
tailing-off etc.)
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We solve the RMP by decomposition, since we solve the problem by linear relaxation to optimality
(1CSD). The RMP is a LP problem, but the SP (slave problem) has to be also fast enough to be solved. If
SP is a NP-Hard problem, perhaps the column-generation approach might not work.

@ device a suitable column generation subproblem: it should be
sufficiently efficient (the efficiency “mainly” depends on the slave

problem)
g

Since we need only some variables (a subset), we would need to handle multiple variables and
remove inactive variables, generating poorer quality dual values (head-in) or having small
improvements over the o.f. value.
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8 SOLUTION METHODS FOR ILP - BRANCH AND BOUND AND
ALTERNATIVE FORMULATIONS (7)

8.1 BRANCH AND BOUND - DEFINITION OF THE PROBLEM

A generic ILP problem is presented this way.
"

Zy = maxe x
Az <bh
- (1)
xr =)
xi € Z, i €1,
where A € R™*" b e R™, ec R", and I C {1,..., n} is the index set of the integer

variables. Variables x; with ¢ ¢ I are the continuous variables. If the problem has both
integer and continuous variables, then it is a mized inleger linear programming problem,
while if all variables are integer it is a pure integer linear programming problem.

The set
X={zeR"|Az <b, x>0, z; € Z for every i € I}

is the feasible region of the problem.

We analyze in the following image the linear relaxation of the problem:
21, — maxe' T

Ar <b (2)

x>0

is called the linear relaxation (or continuous relaxation) of (1).

Note easily that: z; < z,. Infact, if x is the optimal solution of (1) and x! is the optimal solution of (2),
then x! satisfies (2) constraints, while z; = c¢Tx! < ¢Tx! = z;. In the image:

- The orange shaded region represents the feasible region defined by the linear constraints
- The blue dots represent the integer feasible solutions

- The grey dots are integer points that lie outside the feasible region

- The axes form a grid, representing the integer coordinates

min /max ¢’ x
s5:t. Ax<b
xeZl

e © © © © © e o o
e e o o o o e o o
® o o 0 o 0 ® o o
e o o o o o e o o
e @ o o (6] ® @ o

. 2 29— —0-
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Solving linear relaxation can be useful but not so easy; rounding needs other procedures in order to
work properly.

Integer Linear Programming @

: NG,

min/max ¢

s.t. Ax < b
— et -~
X, = A2
-
= b 6

1

Solving the linear relaxation might be interesting, but not so easy. Let’s go better into the details of the
actual problem, with some visualizations coming from the actual lesson:

Integer Linear Programming problem

7 = maxc’ x ;?.

(ILP)
—2x; € L, iel,

e AcR™" bHeR" ceR”

o integer variables x;, i€l C{l,...,n}

e continuous variables x;, i ¢ |
Ky € g i
<y 2 e

e | ={1,...,n}: pure integer linear programming problem (ILP)

o | #{1,...,n}: mixed integer linear programming problem (MILP)
@ feasible region of the problem:

X={xeR": Ax< b, x>0, x; € Z for every i € I}

W /M@z;—a P

% &
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Pure ILP are variables constrained to be integer, into the mixed variant we have also continuous
variable. The feasible region is made up by sets of real points satisfying the inequality (polyhedron)
having points for some variables.

One positive feature of set Xis that itis discrete, so it allows usage of two fundamental concepts used
in solving Integer Linear Programming problems:

1. Divide et Impera (Divide and Conquer):

- The feasible region X is divided into p smaller subsets (X,, X, ..., Xp)

- For each subset Xy, you solve a smaller problem to find zi’’ = max{c T x : x € Xy}

- The optimal solution zjis then the maximum among all these subsolutions

- Thisis useful because smaller problems are often easier to solve than the full problem

2. Linear Relaxation:

- Youremove the integer constraint (x € Z*) and allow continuous values (x = 0)
- This creates an easier-to-solve linear program (LP)
- The solution z; to this relaxed problem gives an upper bound on zj (zi < z))
- Thisisvery practical because:
o LPproblems are much easier to solve than ILP
o The bound helps in branch-and-bound algorithms
o Ifyou're lucky, the LP solution might be integer anyway

These techniques are typically used together in branch-and-bound algorithms:

1. Start with the linear relaxation to get an upper bound

2. Use divide-and-conquer to partition the problem when the relaxation gives non-integer
solutions

3. Continue this process recursively, using the bounds to prune branches that can't contain the
optimal solution

o Divide et impera branch

Given a partition of the feasible region X into subsets Xi,....X,, define
z,(k) =maxf{cTx : xe Xy} for k=1,...,p. Then

= o dide)
@ Linear relaxation (or continuous relaxation) of (ILP) bound
z; = maxc’x
Ax < b (LP)
x>0

The optimal solution x; of (PLI) is feasible for (PL), thus:
E)iE
z; is an optimistic bound for z; (Upper Bound)
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The method exploits the following observation:
Given a partition of the feasible region X into subsels X, ... ,. Xp, define ;:,H
max{c'z|r € Xy} fork=1,....p. Then

(k)

2y = max z;
k=1,....p

The Branch-and-Bound method proceeds by partitioning X into smaller subsets and solving the

problem max c”x on every subset.

- Thisis done recursively, by further dividing the feasible regions of the subproblems in subsets.
If this recursion was to be carried out completely, in the end we would enumerate all integer
solutions of the problem

- Inthis case, at least two issues would arise: first, if the problem has infinitely many feasible
solutions, so the complete enumeration is not possible; second, even assuming that the
feasible region contains a finite number of points, this number might be extremely large and
thus the enumeration would require an unpractical amount of time

- The Branch-and-Bound algorithm aims at exploring only the “promising” areas of the feasible
region, by storing upper and lower bounds for the optimal value within a certain area and using
these bounds to decide that certain subproblems do not need to be solved

8.1.1 Complete Branch and Bound example

Consider the problem Py, where its feasible region (blue points) and the feasible region of its linear
relaxation (light blue quadrilateral) are represented here (arrow is optimization direction).

2! =max  bx; + l_—;.!'g

T+ s <D
10@, + 6 < 45
ri,are = 0
r.ra € 4
After solving the linear relaxation of (Fy), we obtain the optimal solution x; = 3.75,

ra = 1.25 (red point), whose objective value is =} = 24.06.

We are using a divide-et-impera approach: choose one of the fractional variables then divide the
problem into two subproblems. Based on the non-integer solution (3.75, 1.75), we can branch:

- Forx,:eitherx,<3o0rx,z4
- Forx,:eitherx,£1orx,=2
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This example shows how linear relaxation gives a fractional solution, necessitating branching to find
the optimalinteger solution. The bounds help narrow down where the optimal integer solution must
lie.

We have thus obtained an upper bound for the optimal value 2! of (7)), namely 2§ < 24.06.
Now, since ) must take an integer value in (/% ), the optimal solution has to satisfy either
the condition z; < 3 or x; > 4. It follows that the optimal solution of (#,) will be the
better of the optimal solutions of the subproblems (£) and (#%) defined as follows:

2z} =max bxy + 1_—1?;.*‘3 27 =max Hx + l_—lr;f'g
Iy { I < 5§ I { T9 < b
10z, 4+ 629 < 45 10z + 622 < 45
2 () S ()
T T
Ly T9 :2 ] Ly To :: 0
Ty, 19 € Z Iy, Ty € Z

The operation used here is branching so to take a solution; we did branching on variable x;. We can
represent the subproblems and the corresponding bounds by means of a tree, called the Branch-and-
Bound tree.

2% =-24.06

X, =3.75,%,=1.25

X, <3 X, 24

The leaves of the tree are the active problems (in our case, problems (P,;) and (F)).

If we take the union of the points represented, we take back the original divided blue points. The
optimalinteger solution of the problem is considered between the other optimal solutions. In
particular:

- X% &LP(P,) ULP(P,)
o The fractional solution (3.75, 1.25) is not feasible for either subproblem

- X(Pq) UX(P,) =X(Py)
o The union of feasible regions of subproblems equals original problem's feasible region
o Therefore, 2% = max{zi, z°i}
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Consider problem (F;), which is represented below.

The optimal solution of the linear relaxation of () is z; = 3, xy = 2, with objective
value z; = 23.5. Since this solution is integer, (3,2) is also the optimal integer solution
of (P). For this reason, there is no need to branch on node (), which can be pruned.
We say that () is pruned by optimality. Also note that the optimal solution of (F) will
necessarily have objective value z§ > z} = 23.5. Therefore L3 = 23.5 is a lower bound
for the optimal value, and (3,2) is called the incumbent solution, i.e., the best integer
solution found so far.

So, to summarize:

LB=23.5
Z° = 24,06
X, =3.75,x,=1.25

x,s3 X, 24

LP(P1): =3, =2 2z} =235

e z} = z}: (P,) is pruned by optimality
e z{ > z} = 23.5:lower bound for (Py)
@ (3,2) is the incumbent solution

z% =235
X, =3,x,=2

The only non-pruned leaf is (P,), which therefore is the only active problem, and is represented below:

The optimal solution of the linear relaxation of (/) is x; = 4, 29 = 0.83, with objective
value 27 = 23.54. Then 27 < 23.54 and therefore 23.54 is an upper-bound for the optimal
value of (F%). Note that L3 = 23.5 < 23.54, thus (/%) might have a better solution than
the incumbent solution. Since the value of x5 is 0.83, which is not an integer, we branch
on r», obtaining the subproblems (F3) and (FP;) shown below.
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z} = max

So, to summarize:

m IV IAIVIAIA

(Fs)

LP(P:_?): x1=4 =083
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! =max 5z + Y,
Ty +mxy < 5
10z + 622 < 45
r > A4 (Py)
- |
ry,ry 2 0
T, Ty € Z

22 = 23.54

@ 23.54 > LB (=23.5, incumbent): (P) remains open

@ in x/': either xp <0 or xx > 1

Now we have the B&B-tree as the following, with active nodes as P; and P,.

LB=23.5

X, 53

Z° =24.06
x,=3.75,x,=125
X, =4

z'| =-23.54
x,=4,x, =083

we find the optimal solution z,
value of the optimal integer solution of (P3) must satisfy z < 22.5, but since we have
already found an integer solution with value 23.5 (which is a lower bound), we do not
need to further explore the feasible region of (F3), as we are sure that it cannot contain
any integer solution with value larger than 22.5 (and 23.5 > 22.5). We can then prune
node (P3) by bound.
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We get summarizing the following B&B tree, showing the single active problem below:
LB=23.5

o Zu=2406
o x|=3?5,x2=‘|25

LP(P3): x1 =45, x2=0 2z} =225 %53 x4
N AN =2354
o z} <225 < LB(= 23.5) N\ \P2) x=4.5,= 083
e (P3) is pruned by bound ZLmBS =0 X2

ound = . /,*-\
ss=22() (R
Now we solve the linear relaxation of P,, determining there is no feasible solution in the linear
relaxation, therefore having P, having no integer solution.

Node (Py) can then be pruned by infeasibility. The Branch-and-Bound tree, shown below,
does not have any active node and therefore the incumbent solution is the best integer
solution of the problem; in other words, (3,2) is an optimal solution of (F).

LB=23.5

2% =24.06

x, =3.75,x,=1.25
X, Z4

X, <3
z’ = 23.54
x,=4,x, =083

Z‘|_=23.5
X=3,x,=2

Bound = 22.5
X, =45 x,=0

Infeasible
problem
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8.1.2 Formal Description and Model

We give now a formal description. Consider the original problem and we want to find the current good
solution (incumbent solution) so to construct a proper Branch-and-Bound tree, removing all of the
non-active nodes.

Starting from the problem to be solved (Py):
T

zj = maxc' x
Ax < b
x>0 @ Branch-and-Bound tree T
x; € Z, i€l @ incumbent solution x*, LB = ¢' x*

The algorithm will store a lower bound L3 for the optimal value z; as well as the in-
cumbent solution, i.e., the best integer solution z* for (/) found so far (thus =} € Z for
every i € I, and ¢"2* = LB). A Branch-and-Bound tree 7 will be constructed, whose
non-pruned leaves will be the active nodes. We denote by ¢ the maximum index of a node
(#;) in the Branch-and-Bound tree.

Now, consider the entire formulation of the Branch-and-Bound method:
Initialization: 7 := {(F})}, £:= 0, LB := —o0, z* not defined.

1. If there is an active node in T, select an active node (F%); otherwise return the
optimal solution z* and STOP.

2. Solve the linear relaxation of (F), thus determining either an optimal solution

z®) of value zf), or the infeasibility of the problem.

(a) If the linear relaxation of (F}) is infeasible, prune (Py) in T (pruning by
infeasibility);

(b) If zl(.‘“ < LI, then (F}) cannot have better solutions than the incumbent
solution z*; then prune (FP) in T (pruning by bound);

(c) If :r.}k} € Z for every i € I, then £ is an optimal solution of () (and
feasible for (F%)), therefore

o If ¢"2® > LB (always true if (b) does not hold), set z* := z* and
LB = c'z®;
e Prune (F) in T (pruning by optimality);

- . k) 4 -
3. If none of cases (a), (b), (¢) holds, then select an index h € I such that .rL ' ¢ Z,
branch on variable z;,, and construct the following two children of () in 7

(Pe1) == (P) N {an < |20} (Pry2) == (P) N {zn > [2}7]}
Make (FPpy1) and (FPpy2) active and (FP;) non-active. Set ¢ := £ + 2 and go to 1.

Where floor or ceiling notations are used, it means values are rounded-down or rounded-up.
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8.1.3 Implementation Issues

There are many fundamental details to take care of in order to make a Branch-and-Bound method
efficient. Here we examine the following implementation issues.

- Solution of the linear relaxation of every node

o The linear relaxation of any node corresponds to the linear relaxation of the parent
node plus a single constraint

o Ifthe relaxation of the parent node has been solved with the simplex method, we know
an optimal basic solution of the relaxation of the parent node

o By using avariant of the simplex method called “dual simplex method”, one can
efficiently obtain an optimal solution for the same problem with a new constraint
added (“incremental”) — this was present inside of older Italian notes here (online also)

o This feature allows for a fast exploration of the nodes of the Branch-and-Bound tree in
(M)ILP problems

We have a method able to exploit the linear relaxation of parent nodes but also for children nodes,
which is the dual simplex method and given the simple nature of Branch and Bound using it is not

really an issue.

Implementation issues (i) @

Solving the linear relaxation at every node:

@ ‘“incremental” using the dual simplex method
5 ©

4 \®\<
g
(K< \

J

- Selection of an active node
o Step 1 of the algorithm requires to select a node from the list of active nodes
o The number of nodes that will be opened overall depends on how this list is handled; in
particular, this depends on the criteria used to select an active node
o Infact, there are two conflicting targets to keep in mind when choosing an active node:
= Finding a (good) feasible integer solution as soon as possible
e This brings at least two advantages: an integer solution provides a lower
bound for the optimal value of the problem, and having a good lower
bound increases the chances of pruning some nodes by bound

Written by Gabriel R.


https://www.math.unipd.it/~luigi/courses/metmodoc1920/m05.01.dualsimpl.pdf
https://or.stackexchange.com/questions/282/when-should-i-use-dual-simplex-over-primal-simplex

161 MeMoCO Simple (for real)

e Furthermore, in the event that one needs to stop the algorithm before
its natural termination, we have at least found a (good) feasible solution
for the problem, though maybe not the optimal one

= Exploring a small number of nodes

The selection of the active node revolves around these strategies:

o Depth-First-Search: LIFO strategy on the list of active nodes

tends to find feasible integer solution soon
limits the number of active nodes
may be slow

o Best-Bound-First: select node k with largest z}

tends to find integer solution with better value
limits the number of explored nodes
larger number of active nodes (memory issues)

e Hybrid: e.g. DFS at the beginning, BBF later

- Evaluation of feasible solutions
o Inorderto prune nodes by bound, good quality feasible solutions are needed
o Forthis reason, when designing a Branch-and-Bound algorithm we have to decide how
and when feasible solutions should be computed
o There are several options, among which we mention the following:
= Waiting for the enumeration to generate a leaf node whose linear relaxation
has an integer optimal solution
= Implementing a heuristic algorithm that finds a good integer solution before
starting the exploration
= Exploiting (several times during the algorithm, with frequency depending on the
specific problem) the information obtained during the exploration of the tree to
construct better and better feasible solutions
e E.g., byrounding the solution of the linear relaxation in a suitable way,
so that a feasible integer solution is obtained

In any case, the trade-off between the quality of the incumbent solution and the computational effort
needed to obtain it has to be considered.

e “automatic” from the linear relaxation
e ad-hoc heuristics before starting Branch-and-Bound
e heuristics during the exploration (e.g. rounding the linear relaxation)

- Stopping criteria

o The Branch-and-Bound method naturally stops when there are no active nodes left (all
closed/pruned). In this case, the current incumbent solution is an optimal integer
solution

o However, one can stop the algorithm when a given time limit or memory limit has been
reached, but in this case the incumbent solution (if any has been found) is not
guaranteed to be optimal

o Indeed, at any time during the construction of the Branch-and-Bound tree we know a

lower bound LB (given by the value of the incumbent solution), but also an upper

bound UB, given by the maximum of all values ka) of the active nodes: this value is an

optimistic estimation of the integer optimal value z; (meaning that z; < UB)
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o Ifthe algorithm is stopped before its natural termination, the difference between the
value of the incumbent solution LB and the bound UB is an estimation of the quality of
the incumbent solution available

o Forthisreason, a possible stopping criterion might be to terminate the algorithm when
the difference between these two bounds is smaller than a given value (fixed in
advance), when we keep this difference “sufficient” given the quality of the solution

@ no active nodes: incumbent is optimal

e time or memory limits: incumbent (if any) may be not optimal
- we have c"x* = LB < z; < UB = maxy active z{k}
UB —
optimality gap: —
f Y 84F UB
e optimality gap is under a given threshold

B
— (quality of the incumbent solution)

- Selection/choice of the branching variable
o There are several applicable options for the choice of the branching variable, but a
common one is to select the variable with the most fractional value, i.e., the variable

whose fractional part is the closest to 0.5
(k)

o Inotherwords, we define f; = x; " — [xi(k)J, we chooseh € [s.t.h =

argmin;e {min{f;, 1 — f;}}

e most fractional variable: closest to #.5

e diving: tentative partial exploration of subtrees of T

You can see at each iteration, more and more nodes are opening, which means there are more active
nodes (there may be memory issues), but this means we will find more solutions and possibly stop
before. The problem is already solved by CPLEX internally, but that’s also the reason why it has to be
licensed.
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In this case, the Branch and Bound method eventually converges up to a given point. This means
understanding which will be the most promising solution given the conditions of the problem.

Implementation issues (ii)

Evaluation of feasible solutions: uC = e 2? 150
o “automatic” from the linear relaxation
@ ad-hoc heuristics before starting Branch-and-Bound
o heuristics during the exploration (e.g. rounding the linear relaxation) 735
Stopping criteria: / é //400

@ no active nodes: incumbent is optimal

//’SQL

5
o time or memory limits: incumbent (if any) may be not optimal
- we have ¢ x* = LB < z; < UB = maxy sctive zL
i ue—-LB N
- loptimality gap; —— (quality of the incimbent solution)
@ optimality gap is under a given threshold

135 ~ 127

o D
Important

There is a section from 11 to 15 dedicated for the general principles of B&B as a combinatorial
optimization problem method which you can have a read to — but this is not part of the course unit
(and of course not asked inside of the exam). This is section 2.1 inside of the file.

8.2 ALTERNATIVE FORMULATIONS — POLYHEDRAL APPROACHTO LP

We identify a set of linear inequalities s.t. within the polyhedron we have feasible solutions. As a
benchmark we use the classical minimization problem in standard form, with a subset of variables
x; such thatx; € Z,Vi € I. The problem to consider is the following:

Zy max ¢!z
Ar < b (4)
x>
T €4, i€l
where A € ™", be Q™, c € Q" and 1 C {1,..., n} is the index set of the integer

variables.! Let
X={reR"|Ax < b, x>0, z; € Zforeveryi € I}
be the feasible region of the problem, and let

7, — maxe' x

Ar < b (5)
r =)

be the linear relaxation of (4).
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Notice that the linear relaxation is not unique. Given a matrix A’ € R™*" and a vector
b € R™ we say that
Az < ¥
=0

is a formulation for X if
X={zeR"|Az<b, x>0,z €Zforeveryic I}

In this case, the linear programming problem

Z, = maxc’'z
Alg <l (6)
=)

is a linear relaxation of (4), as well. It is clear that X can have infinitely many possible
formulations, and therefore there are infinitely many possible linear relaxations for (4).

"From now on all coefficients will be rational, as this condition is essential to ensure some of the
properties illustrated in this section, which do not always hold if the coefficients are irrational. (After
all, we are interested in implementing algorithms, and therefore the rationality assumption does not pose
any practical restriction.

We may have infinite many other formulations given a specific problem. This is to be represented by
the following representation:

Z- = Okt Ccoe
Iitgx

= {LGR”\AZ'{‘D,L2O}&LGZ‘V/CE-IF

e ¢ @ o © @ © @ @0
¥

® THE LINe AR RE_LAKATLON s NoT LA Quig
f ot

A"H--f lﬂ Av:r...-‘.-' lsh - - =

2

® & & o o o

& 4 ForMULATL OR

Ax §b, x20:
X =) xeR“[Axs b x2 O, w ek eI}

>

I
]
P/ P / :P s-= i POUHEDRON ASSSOUATED To THE TorulAa TIDN)

iMTERASE CTioa) of | A FLNITE Nukt ac . Ot CLOSED

H AP STACSES

v INFIULTELY Ma Y FPRRULATIONS FokR A sameE X<

* THE SolTeory) PAD CESS LY PEAD M pay THHE Folk Much T and

So here, every formulation is every polyhedron inside of the feasible region. In MILP every problem has
a lot of formulations.

- Therefore it would be convenient to choose as the relaxation a polyhedron that is as close as
possible to the optimal integer solution, because smaller polyhedra (formulations) give better
bound

- Thereisto keep in mind that it is not always possible to determine whether one formulation is
larger or smaller than the other, because it may happen that neither contains exactly the other
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8.2.1 Example: Facility Location Problem and Better Formulations

Let’s consider the facility location problem:

Facility Location L
. . oo : n= U wm=bh

There are n possible locations where facilities can be opened to provide L

some service to m customers. If facility i, i =1...., n, is opened, a fixed t ._E-é@ L

cost f; must be paid. The cost for serving customer j with facility i is ¢; /3 %L

el =0k e nandii= 15500 m. Every customer must be served from F\,

exactly one facility (but the same facility can serve more customers). The ’R

problem is to decide which facilities should be opened and to assign each *

customer to a facility at the minimum total cost. =

5 Teor>
DECAGLon UARLA BLES PR

ﬂa: A -J.)(_ _pauz-en-\'-j =24 opews, O offurcsiva
S A 44 .ea.:.i.z 4o Aendes cuatopnaen i:*--m, O oftranconiz

The goal is to minimize the cost of reducing the total cost of opening of different facilities:

T

Z.ff'.-‘h f ZZ"U‘-"U
j=1

i=1 i=1 j

Each customers should be served by exactly one facility:

n

Z iy =1, j7=1,..., m.

i=1

Customer j can be served by facility i if only if { will be opened:

Yi=0=xz; =0, 1=1,...,n,3=1,..., 1.

This can be modeled by linear constraints in at least two ways:

Method 1:

J";j

<y, it=1,...,n,53=1,..., m.

Thus, if y; = 0, then 2 = 0 for all j, while if y; = 1, the above constraints do not pose
any limitation on the x;; variables.

Method 2:

m

E Ty <myy, 1= 1,..., n.

j=1
Note that, if y; = 0, then z;; = 0 for all j, while if 3 = 1 then the constraint becomes
> 1 Ti; < m, which does not pose any restriction on the z;; variables, as the sum of m

j
binary variables is always < m.

fol MUA o P4 roLpoLaTigs B
P " e
o= S
wui = ;E,_ er iy %%C.U xi.:]
lda™
S €. E_‘ Mk_d =4 S:A-» P
o A Y d=4 Lo la 2 IRy M ; L= g
A NREE L AN T Je
6;4 naa_ /‘_)_

(\ h %X v ruyteo s S r " aeiuaeAnael Cou zTaa;,_T“c)
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The two formulations are equivalent, but the first requires more constraints. As the value of M for the
second formulation we can use the number of users m, because the maximum value of the
summation is m and having a minimum M leads to good constraints.

But which of the two solutions is better to choose?

- Inthe end, we come always to the optimal solution anyway

- Typically the fewer constraints there are, the easier it is to solve the problem, but having so
many constraints can lead to a smaller polyhedron

- It can be verified that the first formulation is better, in the sense that it defines a smaller
polyhedron, because if (x, y) satisfies the first formulation, this also satisfies the second
formulation

The constraints in Method 1 are called non-aggregated constraints (because they work on individual
relationships), those in Method 2 are called aggregated constraints (combine multiple relationships
into one constraint). Even if they enclose exactly the same points, the formulations differ in how they
handle the relationship between variables:

With the constraints of Method 1, the model is:

. n - n m i
min} ., fiyi + 3 12, 1 CijTij

Z:! 1 Tij =1, i lnsss m;
Tij < Yi, =1, Nl =il o m (7)
i
0<3; <1, i 1,..., n, j 1,..., m;
I<y=<1, E=T n;
T; €L, i €L i=1,..., n, j=1 m
With the constraints of Method 2, the model is:
min 350, fits + 30 3 e G
YT =1, j=1,...,m;
Z_r I.""r_r i:-.f”.","a- ‘ b | EA— i.": (8)
0<uz; <1, =1y T ) (A, m;
0<yw<1, i=100, n;
Key differences: r; €L,y €L i=1,..., nj=1,..., m

1. P1uses individual constraints x;; < y; for each pair (i, j) to ensure a user can only be served
by an open facility

2. P2 aggregates these into single constraints for each i, where M is a large enough constant (in
this case M = m works)

The first formulation has more constraints than the second one (there are mn non-
ageregated constraints and only n aggregated constraints). We now verify that the first
formulation is better than the second one. To sce this, let Py be the set of points (x,y)

that satisfy

S =1, =1, m;
Tij < Ui, i=1,...n, 3 =1,...,m;
0<z; <1 i=1,..., n, j=1 m

and let /% be the set of points (x, y) that satisfy

n .
Sy =1, j=1,..., m;

mo 1 )
o wg S<my, i=1,..., n;
0<z; <1, p=1,..., n,j=1,..., m;
0<y <1, P=1,..., n.

We show that P € F%.
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First of all we verify that P, C P,. To do so, we show that if (z,y) € P, then (z,y) € 1.
If(zx,y) € Pi,then zy; <y foralli=1,...,n, 7 =1,...,m. Then for every fixed i €
{1,...,n}, the sum of the m inequalitics z;; < y; for j =1,..., m gives Z;" pilsy <M,

and therefore (x,y) € Ps.
Finally, in order to show that P, # P, it is sufficient to find a point in P\ . Take
n =2, m =4, and consider the point given by

I = 1: Iy2 = | 5 L1z = 0, T4 = 0;

0._ Loy = 1. Iy — | &=

] 1
h 5-. Y2 E

T91 = ﬂ. o9

This point satisfy the ageregated constraints but violates the non-ageregated constraints,

because 1 = 1y £ 1 5 [

This proves that P, is strictly contained in P,, making P, a tighter formulation despite having more
constraints. A tighter formulation often provides better bounds for branch-and-bound, though it may
be computationally more expensive to solve due to the larger number of constraints.

Peotkey @ Pa &R I 1
® el_c— %_ Scuce, C),rtl)ép,, => %XLJ S:Jz;_l-ljl“ :w\_jt S'HS\

= ylefy

- p,}:rLPZ e l,c.:)‘/ _’ﬁ_o'}__ VL,=-2_ ,maq -J—lq-z Po\,'\‘_r"

7
Xgq = A | kapg w1 ey O O Y. ‘i\ %
=0 x; =0 %p3 = 1 xpe = A jL=f/2J\ &E

N:mzéf
=)

Xz

Imagine now using the Branch and Bound method, solving the linear relaxation of the problem. This is
a special instance of the problem with 5 customers and 10 facilities.

EXAMPLE: FACILITY LOCATION PROBLEM - IMPACT ON BRANCH-AND-BOUND [n=5, m=10]

3Py =545 3 (RA) =30

n=5;

f=[100,10,10,10,10};

c=[
[2,2,3,4,2,3,4,1,83],

[4,2,2,1,1,89,7,7,5],

[3,8,3,5,2,7,84,3,6],

[1,2,3,6,4,6,89,6,3],

[4,4,3,3,7,89,87,1] G\Q T g\ Cﬁl.)
I

BAR wiTH Pa

N0 CARJ

TSTAL *
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Tt seemns here 4evat— s,aLu«.L._}
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Note: we do not consider the multi-period production in these examples (for time reasons, as it

seems).
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P1 Tree (First Formulation):

Root node: z; (P;) = 54.6
Branching on y, creates 2 children:

o Left(y, < 0): Value 57 (relatively close to root)
o Right(y, = 1): Value 55.6 (also close to root)

- Only 3 nodes total

Small gap between parent and child bounds

P2 Tree (Second Formulation):

- Rootnode: z;(P;) = 39.0
- Much weaker initial bound
- Required branching on multiple y variables:
o Firstony,
o Theny;
o Theny,
o Andsoon...
- Totalof 21 nodes
- Large gaps between parent and child bounds

The key insight is that the bounds in P;'s tree are much closer to each other. When the bound at any
node is closer to the optimal solution (the incumbent), it allows for:

- Better decisions about which nodes to prune

- Fewer branches needed to reach integer solutions
- Earlier pruning of suboptimal branches

- Faster convergence to optimality

This explains why P; only needed 3 nodes while P, required 21 nodes - the stronger bounds in P;
allowed for more effective pruning and exploration of the search tree. The closer the bounds are to the
incumbent solution, the more powerful the branch and bound algorithm becomes at eliminating
suboptimal regions of the search space

This example clearly illustrates why having a tighter formulation (P;) can be beneficial despite having
more constraints - it leads to stronger bounds and a more efficient B&B process, even though each
individual LP relaxation might be more expensive to solve. Given the representation is larger, it is not
so close to the integer points. The closer the bound is to the optimal solution, the easier that bound is
closer to an incumbent.

A formulation is considered better compared to another one when:

{Az =b,z2 >0} C {Az =V, 2 >0}
[ —

polyhedron

so, when the points of a polyhedron are all contained inside of another one, which can be determined
algebraically.
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This is to be represented by the following:

Given two formulations for X,
Ar<b, x>0

and
Ale < b, x>0,

we say that the first formulation is better than the second one if
{reR"|Az < b,z >0} C{zecR"|A'z <V, x> 0}.

This notion is justified by the fact that, if Az < b, > 0 is a better formulation than
Az <V, x =0, then
zr < zp < ;i.

and therefore the linear relaxation given by Ax < b, > 0 yields a tighter bound on
the optimal value of the integer problem than the bound given by the lincar relaxation
Az <V, x>0,

BETTER FORMULATIONS

27 2max c'x 2 = Wwax CTx 2 = waae CTe
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« TlanTER BOUNDS: Yo e RY } (’EI _é)-g’r_ Erat]

—2 LMPRCT DA THE SoLOTON PEOCESS | w2 3. ([~ B&B}
* RE TIeR o©opTcrtcST(C Boupbs/ 1T 15 Moecs
LIKELY To PRUNE pobéesS By BourndD (wiTe Sare (NCUMBTNT)

® MOBE (ucECLY To OBTAIN (NTEGER REK<AT a8

This means that even the problem formulation may be interesting from a computational point of view.

8.2.2 Convex Hull and Ideal Formulation

At the geometric level, however, it is possible to define the ideal formulation, that is, the one that is
geometrically best (alternatively — the formulation for X whose continuous relaxation is as small as
possible with respect to set inclusion).

- Thus, the ideal solution is the convex hull of the feasible region, that is, the minimal convex set
containing the feasible-region (in Italian - “inviluppo convesso”) — see here

- Aconvexset C is a set of points, such that Vx, y € C, the segment joining them is completely
contained in C — smallest convex set that encloses all the points, forming a convex polygon

- All polyhedra associated with formulation are always convex sets

Definition 1 A set I7 C R" is a polyhedron if there exists a system of linear inequalities
Cr <d, x>0 (where C € R™" and d € R™) such that " — {z|Cz < d, v > 0}.
We can then say that a polyhedron [ is a formulation for the set X if

X {reP|lz; e ZVie l}.

Given tow polyhedra 7 and [, both being a formulation for X, we say that [’ is a better
formulation than " if I C I,
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Recall that a set €' C R" is convex if, for every pair of points z,y € (', the line
segment joining @ and y is fully contained in €' (Figure 4). It is easy to verify that
every polyhedron is a convex set.

Figure 4: A convex set and a non-convex set.

Given any set X € R™ (in our case X is the set of feasible solutions of an integer linear
programming problem), we denote by conv(X) the conver hull of X, i.c., the smallest
convex set containing X (Figure 5). In other words, conv(X) is the unique convex set in

R™ such that X C conv(X) and conv(X) C C for every convex set C' containing X.

P conv(
g ®
L] - *
L] ¢ ¢ .
.

IYigure 5: A set and its convex hull.

Given a formulation P = {x | Cx < d,x = 0} for X, since P is a convex set containing X, we have that
X S conv(X) S P

Then conv(X) is contained in the feasible region of the continuous relaxation of every formulation of
X. The following is a fundamental result in integer linear programming. It shows that there exists a
formulation for whose continuous relaxation is precisely conv(X).

o THE C(ONUVEX HoU ©F X (S THE
SMACLLEST CON Ve SeT (nCludina X

s LT WY U RuUE S
. ¥ For oA Tiom PapX/ KE CDM\/(K)C—[D

¢ OLUESTION) & CAN WE CHARACTER2ZE ConV Gx) wort A g sTan
D F| LUNEAR W RLaLTIES T [ TAT cosddt 8 (Toe &
Re7TE PSSR S ( (DEAL) FORMU AT _ .
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cANSWER -« YEs !l R heamns oB TeE
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Theorem 1 (Fundamental Theorem of Integer Linear Programming) Given A € (="
and be Q™ let X = {z e R"|Ax < b, 2 >0, z; € Z for every i € [}. Then conv(X) is
a polyhedron.

In other words, there exist a matriz A € Q™" and a vector b € Q™ such that
conv(X) = {r € R"| Az < b, z > 0}.

Given A € Qixn and b € Q™ such that conv(X) = {r € R"| Ar < b, x> 0},
we say that Ar < b, = > 0 is the ideal formulation for X. The previous
theorem says that such a formulation always exists.

PROPERTIE S

e THGE IDEAL FORMULLATION ALWAUS EXSTS
((oRDLLO R e )

» F—tE—‘oQEJ‘ﬂ -
Kz-ﬁg, x 20 (s IDEAL  FTor. X
LE Avwsd ol L
Al ITS “Basic s=Lu o s (UBRTIcE &)
BRE | ELEHACITS (o DG

(can BE PRoOUEKL)

The Fundamental theorem of Integer Linear Programming says that given an (M)ILP (in the form of a
maximum), such that the matrix A contains only rational values and the convex hull of the feasible
region is a polyhedron, that is, it can be expressed as {Cx < d, x = 0}. We assume this theorem.

The impact on solving ILP with ideal formulations is given by the fact that solving an ILP (min/max) is

equivalent to solving the continuous relaxation of its ideal formulation (conv(X)) with the simplex
method.
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RELAVATLOAN of | TS DEAC TORNUCA TTOA)

21 = mres CTx 2° = ok I i M Y Y CRecA )
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Therefore, in principle, solving an ILP equivalent to solving a LP problem (with no integer variables) in
which the constraints define the ideal formulation. However, there are two major issues which make
integer linear programming harder than linear programming:

- Theideal formulation, in general, is not known, and it can be very difficult to find it

- Evenincases in which the ideal formulation is known, it is often described by a huge number
of constraints, and therefore problem (10) cannot be solved directly with standard LP
algorithms (such as the simplex method) - since conv(x) is NP-complete

IDEAL TO AMULATON ! (SSUVES N
¢ M4y RE DIEEIcocT To FToud (uo‘r tuowm)

e MAY CouwAl & A HUGE NURBER, OF COARTRA (AT

Let’s consider another example: maximum weight matching.

Maximum weight matching

Let G = (V, E) be an undirected graph. A matching in G is a set of edges
M C E such that no two edges in M share a common vertex. In other
words, M C E is a matching if every node of G is the endpoint of at most
one edge in M.

The maximum weight matching problem is the following: given an
undirected graph G = (V, E) and weights on its edges we, e € E, find a
matching M in G whose edges have maximum total weight ZeeM We.

L\ >
hotoblan !
ecc 2=uJ
u‘ v
DECLGON U RABLES FORMUATION F;_
4 1 WET os chotew
tug = v Ma‘— EIELS MO Pl Wy - Hur
0 oLel g wie
!—‘E ‘ L ')"'((.u- 5 A_ \TQV
wrek /
O € ryp €4, wrEl
X6 A , WrEC
Matching (graph theory)
This can be formulated as an integer lincar programming problem. For every edge ¢ € E,
let z,. be a binary variable such that
{ 1 if ¢ is in the matching, ,
B . e €l
0 otherwise,
Let M ={e € |z, = 1}. The weight of M is given by

E Weil e

I

&

m
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In order for M to be a matching, we have to impose that for every node v € V there is
at most one edge ¢ € E, with » as one of its endpoints, satisfying x, = 1. This can be
modeled with the following linear constraint:

Z T <1, veV.

uelV s.t.uvely
Then the maximum weight matching problem can be formulated as the following integer
lincar programming problem:

max »_ ., Wel
Zut Vst upel Fuv = 1,
0<x, <1, (&
€y €

m =
=Em

B
y
)

This formulation is not ideal, in general.

- Ifthe graphis a triangle, every matching consisting of one edge is a maximum weight matching
of weight 1

- Allsolutions give % giving a feasible solution which is a basic solution, but not an ideal

formulation

This formulation is not ideal, in general. For instance, let G be a “triangle”, i.e., V =
{a,b,c} and E = {ab,ac, bc}. Let wy, = wye = wy. = 1. Every matching consisting of one
edge is a maximum weight matching of weight 1. However, setting «7, = «%, = z}. = %
gives a feasible solution for the linear relaxation of (12) with weight 1.5. One can check

that this is a basic solution, and thus, by Theorem 2, the formulation is not ideal.

. P*\ TR N Y =k 3
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B LY

We can find a better formulation by adding “ad-hoc” inequalities, which will be obtained by exploiting
the structure of the problem.

Let U C V be a subset of nodes with |U| odd. Given any matching M in G, every node
in U is the endpoint of at most one edge in M, and every edge in M has at most two
endpoints in U. Then the number of edges in M with both endpoints in U is at most
|U|/2. Since |U] is odd, and the number of edges in M with both endpoints in U is integer,
M contains at most (|U| — 1)/2 edged with both endpoints in U. This means that every
integer point x satisfying the constraints of (12) must also satisfy

Ul-1
Z Ty < | |2 for every U C V such that |U] is odd.

uwel
uwek
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These inequalities are called odd-cut inequalities (below called “o.c.i”), since at least one edge in the
cycle has to be selected and this means such cut off fractional solutions that would otherwise be
feasible in the LP relaxation (valid for any matching), making the formulation tighter to the extreme

points in general.

o A FAMILY oF "VALID \NERUALITLES " ( 0D)-WT INC BUAUTIES)
-0T noST HALF OF The enafs IN A OIECE (AN BE SELECTED x4 x4 kn, <A
-RepuNBRaNT Folk “BVEN cycteS" , EFFECTIV & FOR “"opp cyccE St

e € —K—j—% ¥l He vV Ul edd (ZM_U

[

wore\ !
wr &=
THEORE M ¢ P,l + OTD CUT (mTouAUTIeES s ItEAst |
In the example of the triangle, V' itself has odd cardinality, thus one can take U = V and
write the odd-cut inequality
Lah + Lye + The S 1
(as (|V]| —1)/2 = 1). The point z* violates this inequality, as x2, + z%. + x},. :f > 1.
This proves that the following is a better formulation for our problem:
min Y, p W,
Zrlsi_\' te uvels Luv I 3 vE ‘ -
=1 ' , r .
T vette.werTw S B U CV, [U] odd, (13)
0<z, <1, ceE
T, € 4, e € B

Theorem: P; + odd cut inequalities is ideal

(therefore it would be sufficient to solve its continuous relaxation to find the optimum of the integer
problem)

- However, the number of constraints is exponential (there are 2IVI=1 subsets of V with odd
cardinality) and it is therefore practically impossible to solve the relaxation
o Even for a graph with just 40 nodes, there are more than 500 billion (500 * 10°) odd-cut
inequalities
- Abetter strategy is to solve a sequence of linear relaxations, starting from problem (12) and at
every iteration adding one or more odd-cut inequalities that exclude the current optimal
solution, until an optimal solution of the integer problem is found

- Thisideais discussed in the next section (with a more general framework)
b
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When we have an Integer Linear Programming (ILP) problem, we often face a situation where:

- There are too many potential constraints (like said above)
- Including all these constraints upfront is computationally impossible

Row generation is an approach where:

- We start with a basic formulation (shown as the yellow region in the image), which is a subset
of constraints

- We identify violated inequalities (rows/constraints)

- We add these constraints one at a time solving the relaxed problem

- Checkif the solution violates any of the omitted constraints and if violations are found, add
("generate") those constraints and repeat

- This gradually tightens the formulation towards the convex hull (blue region)

Outcomes by this:

- We're trying to approach the ideal formulation (convex hull of integer solutions)
- The convex hull would give us the tightest possible LP relaxation

- Butdescribing it completely is usually impractical

- Row generation gives us a practical way to get closer to it

The golden arrow in the image suggests the direction of improvement —we're trying to shrink the
relaxation (yellow) toward the convex hull (blue) by adding strategic cuts.

This leads to the Cutting Plane Approach:

- Solve the LP relaxation
- Ifthe solution x* is not integer:
o Find avalid inequality that is violated by x*
o Addthis inequality as a "cut"
o Re-solve the LP
- Repeat until we get an integer solution or can't find more cuts

The key advantages are:

- We avoid dealing with exponentially many constraints upfront

- We only generate constraints that are actually needed

- Each iteration makes the formulation tighter

- We can often solve large problems that would be impossible to handle if we included all
constraints initially

This approach is particularly powerful because:

- It's more efficient than enumerating all constraints
- It can be combined with branch-and-bound (leading to branch-and-cut)
- Many problems have efficient separation procedures to find violated inequalities

Row generation is used do deal with known families of valid inequalities, while cutting plane method
find new inequalities, adding cuts valid for integer solutions.
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8.3 CUTTING PLANE METHODS

The idea behind the cutting plane methods (“metodi dei piani di taglio”) is to solve a sequence of
linear relaxations that approximate better and better the convex hull of the feasible region around the

optimal solution. Cutting planes strictly improve formulations of X!

Consider more formally we want to solve the following ILP:

(Pr)
T
max ¢’ 1 ,
re X (Pr)
where X = {z € R"|Azx < b, 2 > 0, 2; € Z for every 1 € I}, for some given matrix

A e Q™™ and vector b € Q™.

A valid inequality does not cut off valid points:

We say that a linear inequality o’z < 3, where o € R™ and 3 € R, is valid for X if

oz < B is satisfied by every z € X. Note that if A’z < ¥, 2 > 0, is a formulation for

X. then also the system obtained by adding a valid inequality e’z < f to the system

A'r <V is a formulation for X.
Basically, itis a constraint that is satisfied by ALL feasible integer solutions of your original problem,
even if it's not part of your initial formulation. Think of it as a "hidden rule" that you discover.

A cut separates the convex hull from X (so to cut away non-feasible solutions):

Given a point z* ¢ conv(X), we say that a valid inequality for X o’z < B culs off (or
separates) x* if axr®™ > . Such an inequality is also called a cul or cutting plane. If
A'r <V, 2 > 0 is a formulation for X, z* is a point satisfying A'z* < ¥, z* > 0. and
o’z < B is a cutting plane separating z*, then also the system A’z <V, oz < B,z >0
is a formulation for X.

The general method given below is a general framework for tackling integer linear programming
problems, but in order to implement it one needs an automatic technique to find valid inequalities
that cut off the current solution.

&

o
D&comM Po sl TionN

Cutting plane method

Start with the linear relaxation max{e' 2| Az < b. & > 0}.

1. Solve the current linear relaxation. and let &* be a basic optimal solution:

2. If@* € X, then &* isjoptimal for (P;); STOP.

3. Otherwise, fiud an inequality a’e < 4 that is valid for X and cuts off *;

I. Add the inequality o”a < 3 to the current lincar relaxation and go to 1.
7
ISSVUES EuD, ©
TERMINATION 7 (\f THE Comrufk HULL (S A PoLMHE N2Zaw ... )
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As said above - this method works like this:

- You solve the LP relaxation (ignore integer constraints)
If you get a fractional solution x*, you try to find a valid inequality that:
o Is satisfied by all feasible integer solutions

o ltisviolated by your current fractional solution x*
This inequality "cuts off" the fractional solution while keeping all integer solutions.
- Add this cut to your problem and resolve
Repeat until you get an integer solution

The term "cutting plane" comes from the geometric interpretation:

- The newinequality is like drawing a line (plane in higher dimensions)
This line "cuts off" part of your feasible region

Specifically, it cuts off the current fractional solution

But it doesn't cut off any integer solutions you care about

The decomposition idea appears because we're essentially breaking the problem into two parts:

- MASTER PROBLEM:
o The LP relaxation we keep solving
o Gets progressively tighter with each cut
-  SUBPROBLEM:
o The separation problem of finding violated inequalities
o Functions as a "cut generator"

The decomposition is natural because:

- It's often easier to solve these two parts separately
- The separation problem (finding cuts) might have a special structure we can exploit
- We can develop specialized algorithms for each part

This method is powerful because it dynamically generates only the necessary constraints, rather than
starting with all possible constraints upfront.

There are issues however:

- The major challenge is how to systematically find valid inequalities that cut off fractional
solutions. This isn't trivial because:
o There could be many possible valid inequalities
o We need an efficient way to identify which ones are helpful
o We need to ensure they're actually valid for all integer solutions
- We need to know if and when the algorithm will stop. This relates to:
o Whether we can keep finding useful cuts
o Whetherwe'llreach an integer solution in finite time
o Thetheoretical guarantee that the process converges (convex hull is a polyhedron)

Itis clear that the above method is a general framework for tackling integer linear programming
problems, but in order to implement it one needs an automatic technique to find valid inequalities
that cut off the current solution. Below, we give a possible technique to do this.
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8.3.1 Gomory Cuts

Gomory cutting plane method can be applied only to pure ILP problems — all variables integer/all

constraints linear — (although there are extensions to the mixed integer case) and done to simplify
pure ILP or inequalities (not restrictive). Thus we consider the problem:

zp=mine' ¢
.-4;}.‘ b
x>0 (14)
AL
where A € Q™*" and b € Q™. Define X = {z|Az=b, x>0,z € Z"}.

Solve the continuous relaxation with the simplex method, thus obtaining the problem in tableau form
with respect to an optimal basis B (where below, N is the set of indices of the non-basic variables):
GOMORY CUTS

To Stnpy EX X1 = miu e
Ahb:b AG@MKW'EEQM
v 2O
Ll Lk X= [xeZ" [Au=b 20f

N Pu [ xeR™| A=t x25)

s RELAX ArJD ORTALM AN OPTIHAL FASIc a0 Tiornd (TR-ReeEau

- Puoe 1L P

. GONALITTAES ( no+ rc.sf'h‘r.""l\rc )

FoRM wW.R.T. B“)

BN < [Apea - Apgy Aged], A-[2%N], =5-F"b, 2% =0, 2¢ch =2

7 Cowsomn cat Forh) i, 2
= 3 (e A
2 N X 2
=pzy t Cj)é_'\)ah;‘jz_‘j = b A= 1. v
P | 24D

If the right hand side is fractional (not integer), we can create a cut satisfying any integer solution and
cutting off the current fractional solution.

Since B is an optimal basis, the reduced costs are non-negative: ¢; > () for every j € N.
The optimal basic solution x* is given by

-"'.*{e] = by, i=1,....,m;
i = 0, jEN;

therefore z* € Z" il and only if b, eZforalli=1,....m

If this is not the case, let h € {1,...,m} be an index such that by, ¢ Z.
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Note that every vector x satisfying the linear equation system Ax = b, x = 0 also satisfies:

Tgln) T+ E |”‘fr_f |-f'JI <,

jeN

by, = xgp + E Qp T = Tgpy) E [@p|x;,
jEN

jEN

because

where the inequalities [ollows from the [act that z; > 0 and ay; > |ay,| lor every j.

Now, since all variables are constrained to take an integer value, every feasible solution

Tin) + Zl”"u |z < |bn] (15)

JEN

satislies

because zgp) + er_‘\- | Ahj |.rJ is an integer number.
The inequality (15) is a Gomory cut, since it is a valid inequality for X.

- ltexamines a fractional solution from the simplex method and creates a new constraint that
removes this fractional solution while keeping all valid integer solutions
- It does this by exploiting the fact that if all variables must be integer, then certain
combinations of these variables must also result in integer values
o When we find a fractional value in our solution, we can create a constraint that
essentially says "this combination must be integer" which cuts off our current
fractional solution but preserves all true integer solutions

In simpler terms:

- Start with a linear relaxation of an integer program
- Solve it using simplex method
- If we get a fractional solution, we want to cut it off

This is how it works:

- When we have a simplex tableau with fractional basic variables:
o Pick arowwhere the right-hand side is fractional
o Round down all the coefficients to have all left side integer and floor to be the largest
o From this row, create a new inequality that:
= Must be satisfied by all integer solutions
= |sviolated by the current fractional solution
- Ifyou have a constraint like:

.xl + 2.7.x2 = 34

- The Gomory cut would say: "Since x; and x, must be integer, the left side must be integer too"
- Sowe can create a cut like:

X1 +2x, <3
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Inequality (15) is a Gomory cut. The above discussion shows that the Gomory cut (15)
is a valid inequality for X. Moreover, we now verify that it cuts off the current optimal

solution x*: B B
+ZLah] -—CL‘ﬂ ) = bh> Lbhj,

JEN

where the inequality by, > | by | holds because by, is not integer.

This cuts off the fractional solution but keeps all integer solutions.

- It's called a "cut" because it cuts off part of the feasible region of the LP relaxation while
preserving all integer solutions — inequality is “valid”, so satisfied by any integer solution

- Think of it as adding constraints that enforce "integrality" by using the fractional parts of the
current solution to generate new constraints, in a systematic way (generated by tableau)

*h: by ¢Z

V*" 2 : *acey -+ J%':J F_"“J{ x é 5 i f ':""/ x) 2 -z_;\,
% =Pn w: # s B 1T 7_‘ < Cohlwvly
H._‘i)/( Z xpit Lﬁ-eLJ  m

[—b VAuD INEquautH
ViecaTeDp BY 9 x(;::'q Y z__ Eying =biy W

e GENERAL PROCEDURE TOFWDOY A CUT | Cr/cr) TRACTIONAC ¥

‘ (Nc QuaALTY
=

There is an implementation issue to be solved to integrate Gomory cuts into the cutting plane
procedure —transform this problem into an equivalent form adding a slack variable, which must be
integer.

It is convenient to rewrite the Gomory cut (15) in an equivalent form. By adding a slack
variable s, (15) becomes

Tgp) + E [r_.f-_;u- |;s.'j +s=|by], s=>0.
JEN
Since all coellicients in the above equations are integer, il = has integer entries then s is
an integer as well. We can then require s to be an integer variable.

Il from the above equation we subtract the tableau equation

I:’i[h] + Z "_'Lflj:ﬁj = F’h'

jer

we obtain

> (lan;] — ang)z; + 5 = [bn] — bn.

JjEN

This form of the cut is known as Gomory fractional cul (or Gomory cul in fraclional

Jorm).
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IMPLEMENTATION ISSUE: INTEGRATING GOMORY CUTS INTO THE (iterative) CUTTING PLANE PROCEDURE
Trom THE (MIBEEUE O totHula T ( ADD Go MOQu uT )

i =2
- l c: : = -
: T JenN K =8
(4) xpu | 2@ = LY 2n Aeinn Chcatin, )

Jem
* 027 ‘f% e )2y & [ba |

To CGoMoRrY FrRactiomrmar coT (tnprovEd Foplt. (W TalleAu Forh )
(2) . pe] “%{@J‘jx‘u'+s=té¢‘j S20, INTEaER

@ploce (2) I.j(.?]-(*fa.j) —> o&zN (Léﬁl—a_.%-)f)# s = e =Thi

We thus obtain a new problem in the right form where the variable is basic but negative, so given
simplex rules, we would need to continue iterating.
e A NEW PLOBLEM 1N THE “"RUCGHTY FORM ((TERATE )
- S 43 e basce yariaQRla bee & = 11D i.

So: the Gomory fractional cut comes in when we try to make the original Gomory cut more
computationally efficient — add a slack variable/subtract the original tableau equation and get the
fractional cut.

- Thisis good since it’s already in the right form to be added inside of the tableau and also the
coefficients are small (just the fractional parts), with the slack variable leaving the basis first
for the dual simplex

- This makes the cut more numerically stable and easier to work with while maintaining its
cutting properties

Il we add this constraint to the previous optimal tableau, we obtain

min z
—2 +z;c.\' CiL = T%B
Tg + Z;L.\' a;;r; = b, i=1,...,m
ZJ(__\-( lan; | —anj)z; +s = |bn] — b
T, s = .
This problem is already in tableau form with respect to the basic variables zgpy), . . ., L i), S

(i.c., the same basis as before, plus variable s); moreover, this basis is [easible for the dual,
as all reduced costs are non-negative (they coincide with the previous reduced costs).
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In summary — given any problem:

- We can solve it with simplex method: if feasible good, otherwise, we apply a Gomory cut (take
the floor of everything and is a cut since violated by current solution)
- Iterate this method thus obtaining an integer solution

. DUAL S HPLE ¢ (Mot eRrElcEnT ! )

Cj 2O ,EUEN Fok s =D puac TEASRE MARTAC N
Llohl = He K[O =2 PRUC INFEASB S LM pPeoUE
FRON SLVLPLEX =0 (ONPLE RONTARY SACKIIESS FTA-roZA-( N

Gomory cuts provide a systematic way to solve pure integer linear programs by iteratively solving LP
relaxations with the simplex method, and whenever we get a fractional solution, we generate a valid
inequality (cut) from the tableau that is guaranteed to remove this fractional solution while preserving
all integer solutions; we then resolve using dual simplex (which is efficient here due to the structure of
the cuts) until we eventually obtain an integer solution.

8.3.2 Complete Example

Consider the following problem/example (before you attack me since this is a “collection of images”
as other ungrateful people have done overtime (a few, but present) —this was done in 5 minutes in
lesson, so the best thing is to combine prof. notes in all forms — be thankful given the file
completeness, instead reach me in case of feedback):

min z = —1lzy —4.215
-1+ < 2 )
- 1€
8%y +2ry < 17 \15)
ry,r2 = (0 integer.

The feasible region of the linear relaxation is shown in the picture:
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Transform the problem into standard form adding slack variables and have it into pure ILP form:

EXAMPLE
mMim, = Moy -4 2%
-y + = €2 ki
8"‘-1_-!— 2.1«-2_ Z AT
%y vy 20 | INTECER
s Stampaly) FolM ( INTEasn Scacm VAR .
AW 3 s Mg = Ul segs ‘
SRR R Py
Bayg »2ra oy TAF
x4, %y, Xy ¥y & i
~h PuRs [.L.P. ! LokoRy cuTUNS PUNIES 3
VTER A APP LY SIhPLEX To THE UNEAR REA XA TN Argh) SR TAMmY
-2 +FAAL weg + A5 2y = 284G AN §
(i‘) ey + ©.8 xa 4+ d .14 SEME =Sk V- e a DX ég
xq T2 el Bl O A el LS AR ?—,

The corresponding basic solution is x4 = 24 = 0, z; = 1.3, 2, = 3.3 (the upper vertex of
the quadrilateral in the above picture), with objective function value z = —28.16. Since
the values of =7 and r» are not integer, this is not a feasible solution of (16). We can
derive, e.g., a Gomory cut from the equation z, + 0.825 + 0.12; = 3.3, thus obtaining

Ty < 3.

If this constraint is added to the original linear relaxation, we obtain a better formulation:

minz = llzy + 4.2x,

T+ xy < 2
8ry +2r, < 17
r, < 3

Tr,axy = 0

whose [easible region is the [ollowing:

In order to solve this new problem, we first write the cut in [ractional form with a slack
variable xx:

—().8,]'.'_-‘ e ”ll; + Is = —1)3

We then add the constraint to the previous tableau:

z +1.16253 +1.52x, = 28.16
ry  H+08xy 0.1z, = 3.3
Ty 0.2x4 H0.1xy = 1.3
0.8x4 0.1ry +x; = 0.3
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aohorY T WRT. (sg-) =z
L/fJ 2y + LD,_E_\ 3 -|~|_D‘. ‘f_\ 7y < Lg'-j —2 [, £2

ITER 2 Socue THE P —B
24 GokoRY FrACTiOMAL CUT In TARLEAU FOARM

@) ) 4 g =R (s e_E_f_)
(RFfLACE () L.] (2)—(-{))
2.2 SUATIAG LD IN C ANORLCAL FORM

cut 1 —» X, & B
Vs

- AR KD hel = | 26.AL
x.9 ! + O‘F-l:’; + ©O.1 o, = 5._}5
e Y =D oo |48y A6 e LT

—0f >3 -O.L X v = —O. K P

We then add the constraint to the previous tableau:

—2 +1.16z3 +1.52x, = 28.16
xy  +0.8zy  4+0.1zy = 33
) 0.2x4 +0.1xzy = 1.3

0.8x4 0.1z; x5 0.3

If the dual simplex method is applied, x5 leaves the basis and x5 enters, as min {% H } =

'(;_',:;. Alter this single iteration, we obtain the following optimal tableau:
—z +1.375z, +145z; = 27.726
T3 4z = 3
Ty +0.125x4 —0.26z, = 1.375

T3 +0.125z4 —1.25z5 = 0.375

The corresponding basic solution is z; = 1.375, x3 = 3 x3 = 0.375 (upper-right vertex in
the previous picture), with objective value z = 27.725.

From the equation xg + 0.125x4 — 1.2525 = 0.375 of the tableau, we obtain the Gomory
cut
Iy 2.1';. < 0.

Since x3 = 2+ &y — x3 and x5 = 3 — x4, in the original space of variables (z,,x;) the
above inequality can be rewritten as

Ty 4 xg < 4.
If this constraint is added to the original problem, we obtain the new linear relaxation

min z = 11z + 4.2z,

—I1 + I S 2
8ry +2x, < 17
Ia S- 3
Ty +1e <4
r,re = 0
shown in the picture.
o
cut 1
. ~
v
[*]
cut 2
o
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4.33¢

x V= og‘;r é&g
O

o

[1]) s +0.125[ x4 +[ - 1. 7_5_( ag Tk 325| »xy-24;¢0

Written in [ractional form, the cut is

0.125z4 — 0.75x5 + 16 =

If we add this constraint to the tableau, we obtain
—z +1.375x4 +1.45x,
Ty +x5
T +0.125x4 —0.25x5
rg +0.125z4 —1.25x
—0.125x4 —0.75x5

24 GoMpld WIT WART (e .5) %3

0.375.

+I

ez, ]

27.725

1.375
0.375
—0.375

L1y +[0-125] 24 +]- 125 =g < [0.325] B x5y -2x5<0

ITER 3 ; 3DLUE THE (LDP—P
31 GORORY FRACTIDNAC COT (N Taldleaw FOLM

2.2 STaemine LP (A TARCEAU FO40T
= f]

+’(\3-?S‘)c¢1, + AL 2 g =23 2%
=) o R = 3
>3 01250, | = ©.20xs AF ML
23 |+ OARS y =105 e = D335

-0, 12.?:-@ — D AF gtk = ©O3FF

3.3 APPLy DUAC SUPLS < AND OE AN

’ = + AR g + 294 xg = 27
x; e =y +4%3 2o =2%
xg 6 =g 3 [ % | [ 2 A5
ey —2eg = 0
4/6 =4 +xgc _4/3 e, = 0.&
A1l GoMoRY (oT wRrT. (& ?
"fé_J xy + [_4 g +[_ /3
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We add this constraint to the tableau:
—z +17 /1524

—1/614
t1/6xy

1/6xy
1/6x4

+29/15x4
+4/3x4
1/3xq

tag

4/3xq
2/3xq

g

In this case, two iterations of the dual simplex method are
tableau: first 7 leaves the basis and xg enters, then g leaves and x4 enters the basis. We

g

MeMoCO Simple (for real)

0.5
0.5

» needed to obtain an optimal

obtain:
z +13/15a5 F76/ 1527 23,6
€9 +2/3x3 +1/3x; = 3
T —1/3x; +1/3z; = 1
4/3x3 x4 ~10/3z; = 3
— 2;'(3;!‘3 +x5 — 1/3;})7 = 0
—1/3x4 Tg ~2/3x; = 0
The corresponding optimal solution is #; = 1, 25 = 3, with objective value =z = 23.6.

Since this solution has integer components, this is an optimal solution for the initial

integer linear programming problem.

ITER 4 : SoLUE THE LY —»
G.1 ooy FRACTOMNACL CUT

_%,‘q _2./3,‘_54-::_.;) T

(N TARMEAL FORM

ol

4.2 STARTNG LP (N TA BcEA O ToRIT

s Z23
= 2.5
= die
=1

= o&

%3 xg+x3 = -O.§

+ P 2y

L ot | A MR EY

+4/3 >3-
—49/3 ey
el o o M E 50

= Ig +ATAL kg +E3/48 X
Xy ~AE | xe, WY e
-y UG xo S
= T+~ xg
4/6 X, ""Xg — &/ 3 g
=g xe
4.5 AfPy DAL SLITPLE X Awd o THLAN]
-2 +43/4‘§u.3
=y +2{.3 xa3
xq =A/3 3¢ 3
G/3 >3 o
-2/3 x3 +xg
13 x3 + %

Let me break down this example step by step:
1. Initial Problem:

minz =-11x, - 4.2x,

Xyt XS 2

8x, +2x,< 17

X4, X, = 0 integer

Written by Gabriel R.
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2. First Step - Standard Form:

- Add slack variables x; and x,

- Convert to equalities

- Getinitial tableau through simplex method

- Find optimal solution: x, = 1.3, x, = 3.3 (NON-INTEGER!)

3. First Gomory Cut:

- From equation x, + 0.8x; + 0.1x,=3.3
- Generatecutx,<3
- Feasible region gets smaller (see first cut in diagram)

4. Add Cut in Fractional Form:

- 0.8%;-0.1x, +x;=-0.3

- Addtotableau

- Solve with dual simplex (x5 leaves, x; enters)

- Getnew solution: x, =1.375, x, = 3, X3 = 0.375 (still fractional!)

5. Second Gomory Cut:

- Fromx;+0.125x, - 1.25x,=0.375

- Getxz-2x;<0

Translates to x, + X, < 4 in original variables
Add to tableau in fractional form

6. Final Steps:

- Continue process
- Eventually reach integer solution x, =1,x,=3
- Thisis optimal for original problem with z=23.6

The example shows how each Gomory cut progressively restricts the feasible region until we reach an
integer solution, while the dual simplex method efficiently handles the new cuts at each iteration.

CONVERGENCE

THEOLE RATIONAL COEPFIcie T =D COVVeR ccmeE (N FINITE #H (TERS

AdvawTa GE S ]
e CONVERLG ToO IN<TEcER. OPTutum
s VERAY SIMPLE “Fing ™ ((,U‘T SGPAQHTLQN) Peo ¢ Dues

|SSUES
« MAYBE M4aNY () ERATION §

+ MUHERLCAL STARIOTY ( “SMooTH * VeL Tices ---)

REMARK
+ GAN BE GEMNCLALIZED TO “GoMORY MIXE] INTEGER CUTS " FoR M ILP
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In the end: using rational coefficients leads to convergence in finite iterations. This is demonstrated in
the example where each cut (x2 < 3, x1 +x2 < 4, 2x1 + x2 < 5) progressively tightens the feasible region
until reaching the integer optimum (x1 =1, x2 = 3).

Advantages:

1. Converge to integer optimum - The example clearly shows this, converging to integer values
after 3 cuts

2. Quite simple 'find' (cut separation) procedure - Each cut is mechanically derived from
fractional values in the tableau

Issues:

1. Maybe many (!!) iterations — While this example took only 3 cuts, larger problems could require
many more

2. Numerical stability (‘'smooth' vertices) — The example shows increasingly complex fractions in
the tableaus (like 17/15, 29/15), highlighting potential numerical issues

Remark:

- Can be generalized to “Gomory mixed integer cuts” for MILP

Side note: the other notes for this course present the branch-and-cut, which essentially merges
branch and bound and cutting planes where:

- You start with continuous relaxation and add cutting planes
- You apply branch-and-bound
- You can add more cuts at each node of the branch-and-bound tree

The idea is that you can combine both approaches in various ways:

- Adding cuts only at the beginning
- Adding cuts before branching
- Adding cuts throughout the branch-and-bound process
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9 COVER INEQUALITIES (8)

Understanding how cutting planes strengthen formulations is central to modern optimization. When
we work with integer programming problems, we're often dealing with their linear relaxations —
continuous approximations of discrete feasible regions. The quality of these relaxations directly
impacts solution efficiency. This is important since:

- The convex hull of integer solutions represents our ideal: it's the tightest possible continuous
relaxation we could hope for. Any valid integer solution lies within this hull, and its boundaries
precisely define the space of feasible solutions. However, explicitly describing the convex hull
is usually impractical due to the potentially enormous humber of constraints needed

- Cutsthat belong to the convex hull, so to help describe facets of the convex hull of integer
solutions. When added to the linear relaxation, these cuts help make the relaxation tighter and
closer to the integer polytope.

- Cuts not belonging to the convex hull may still be valid and useful but don't necessarily
correspond to facets of the convex hull. These include specialized cuts depending on the
problem nature, called customized cuts:

o Non-aggregated cuts
o Coverinequalities (for knapsack problems)
o Facility location specific cuts

So basically: what happens when we decide to stop after a certain number of iterations or X cuts?
Maybe we will find better formulation, from where to start the better formulation/resolution. This is
what the solvers do. So: problems might have different constraints.

VALID INEQUALITIES FOR (M)ILP

GENERA C CLLTOM 12 =D
PURODSE coTs cuTs o
COY\J Ve < C(Dmﬂz"t [[LP[,‘-’LLLP) ODD wTS Gomory cut 1
YN AN (= N EEER (wererTed hatcHuad)
firiis L
COWVEX s MOM -AGGRECATE D
HUuCL No (FACLITY CocATian) )
CoUETIL
C MULT I - RNAP SACK< )

Can we put together these two things in a convenient way? Yes. Modern solvers don't attempt to add
all possible cuts — doing so would be computationally prohibitive. Instead, they employ sophisticated
strategies to:

- ldentify the most violated inequalities

- Select cuts that provide the greatest improvement in bound quality

- Balance the strengthening effect against the computational overhead
- Recognize when additional cuts yield diminishing returns
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9.1 COVER INEQUALITIES FOR THE KNAPSACK PROBLEM

Recall the knapsack problem:

In the knapsack problem we are given n items of weight a4, ...,a, and profit py,.... P
respectively, and a bag (the knapsack) of maximum capacity 5. We have to determine
a subset of the n items that can be put in the bag without exceeding the maximum
capacity, maximizing the total profit. In the following we assume that a,.....a, and
are integer numbers.! If we define binary variables z, . .., z,, where z; = 1 if and only if
item 1 is selected, we can formulate the knapsack problem as the following integer linear
programming problem:

max Z DT (1)
i=1

T

\ ' & 2
s.t. Z”,.f! <p (2)

i=1
0<ax; <1, 1=1,..., 1, (3)
€L, i=1,..., n. (4)

The feasible region of the continuous relaxation, given by constraints (2)—(3), is usually much larger
than the ideal formulation. It is then reasonable to introduce inequalities to strengthen the
formulation: these inequalities must be satisfied by all the integer solutions but should hopefully yield
a continuous relaxation closer to the ideal formulation.

The formulation is not ideal, however, since we get non-integer solutions out of this. We may decide to
run, for example, the Branch-and-Bound method directly or improve the formulation if possible.

Assume we can apply cutting plane methods (aka Gomory cuts application); can we find a deeper cut
(based on deeper reasoning of the problem).

l—'21 > -BJ AnD  Cocln We S..-H*\eu.a’ct\c_w l:~7 a.o(aﬁu'wﬁ Ua 2 a A.'.u\e:'l)ucve;HE/Q?

e des 4 : ( shouwek lcnows)
Any possible integer solution in the knapsack problem satisfies the example inequality; to cut it away,

we must apply constraints over the sum, using better formulation principles (= cut away fractional
value). Of course, value (=meaning we cut away more) depends on the problem reasoning. Here we
show the formulation is not integer.

« 958 2 | | cove R 1weo_uA-mTLES -

ExnMpLe . g Bk Doy 4 Dowak Lo + D Alix FEl D4R =D
S‘+- ‘b)L'l %q—y‘*l*g’“'_’: Jﬁé\'LL“LT *‘3 e fr— 54‘1 ———-D Vy_eX, }(’1+YL+ >(_)3 éz_

%LL»[)LQﬂ,Y (vacn (ueEauact
XSLL:LA/BI /L[/[[/LLO\& J %4444_ = _j_‘;‘>l — A-DD )44.L.><L+><5£Z
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So, this ideas can be applied this way, defining the concepts of cover and cover inequality:

We call cover any subset of the n items that exceeds the knapsack capacity: in other

words, a cover is a subset ' C {1,..., n} such that
E a; > [3.
e
Since ay,...,a, and [ are all integer numbers, the above condition can be restated as
follows:
E a; > [+ 1.
icC

Given a cover (U, since it is impossible to put all the elements of C' in the knapsack, at
most |C'] =1 of them can be selected. This implies that the following inequality is satisfied

by all integer solutions:
E T; <

e

Cl—1.

This inequality is called cover inequality.

Cover inequalities are a subset of cutting planes tailored specifically for binary ILP problems.

The cover inequality is valid for X. Equivalently, given the cardinality of the variables (|C|), the
inequality is equivalent to:

d(1-z)>1

ieC
If all possible cover inequalities are added to the original formulation of the knapsack problem, we
obtain better formulation.

- However, it can be shown that this is not the ideal formulation yet. This is a better formulation
for sure, but definitely we might not get the convex hull
CokR: C €j1-n} sutthar > a:>R == S ac = R+a
LeC cecC

[

CARIMOT SELECT 4¢y +HE [TeEMz apP O

xeX =2 > x<lcl = = o« s lcd-4
Lel.

e

cOUVEE m&&uﬂruﬂf Va Loy TR ><
EQu VALEM T TORIT
[c]z2 =4 > S (-4 g-2 = = (d-x) =24
Jec e cec
P BETTER FORAULATIONS | ADD %?. (A->) = 4, Ve Ld..ni ; %ﬁq; EP.t:L ®
O(2") =>rnb!
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Unfortunately, the number of cover inequalities is exponentially large, as in the worst case there is one
cover inequality for every non-empty subset C of {1, ...,n}

- Eventhough in most practical cases only some of the subsets of {1,...,n} are actually covers,
the number of covers is too large. The idea is then to add dynamically the cover inequalities
only when they are really needed, adding to the original formulation

P BCTTER FORMULATWORS | ADD Lzec U)z241, ¥VCe 14..P\.i ! %.C_Q_;Q.P-li ®
O(2") =>rnd!

Question: Is it worth applying to cover inequalities?

- Yes, we solve the linear relaxation and find one of the cover inequalities

- Even adding all of the cover inequalities, we have no guarantee to be in the convex hull (with
Gomory cuts we have this guarantee)

- With Gomory cuts, thanks to the rounding down, separation procedure is trivial

- Here, we have to formalize it, forming an optimization problem

9.2 SEPARATION PROCEDURE

These inequalities are much faster than usual inequalities; if we were able to find them, we can add
them instead of Gomory cuts. Violated inequalities would take much more time (aka — exponential).
That’s why we would need to add the separation procedure. Can we find this for odd cut inequalities

and find the most violated inequality?
To do so:

- Suppose that we have solved the continuous relaxation (1)—(3) (for instance with the simplex
method), thus obtaining a solution x that is not an integer vector

- We want to verify if there is a cover inequality violated by x, with the purpose of adding this
inequality to the formulation and solving the new linear programming problem

- The problem of finding a cover inequality violated by x, or deciding that none exists, is the
separation problem for the cover inequalities. Note that since the number of cover inequalities
is exponentially large, we cannot simply enumerate them and look for a violated one

Deciding if there is a cover inequality violated by x means deciding if there exists a subset C S
{1,...,n} such that:

(<) 2_ai 2 g-k-'i— OBFT. PR Bedm
re o
i NP DECISion VARAGLE ¥ = {

o> o=3 ox

~&C

4 <L veC
o )|
(<) % (1-=:) < 4 otherw it

The decision variable is the subset, which is binary since the item is present in the knapsack we have
1, otherwise 0. The set of items to be selected must be a cover (capacity of knapsack plus 1):
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max Z(l — T;)z; (5)
i—1

st Y azm > B+, (6)
i=1

0<z<1., i=1,...,n, (7)

% €L, 1=1,...,n. (8)

Condition (i) ensures that C' is a cover, while condition (ii) says that ¥ does not satisfy
the corresponding cover inequality.

To model the above problem, we introduce binary variables zy, ..., z,, where z; = 1 if
and only if item 7 is in the cover C'. Condition (i) can be rewritten as follows:

T

E a;z > [+ 1.

i=1
Since |C| = ):  Zi, condition (ii) can be rewritten as follows:

mn

i.‘?—',‘&',‘ e ii, -1, ie., Z{l = :TT,'):.'-,_ i
i=1 i=1

i=1

We have the subset to be a cover and more over the corresponding constraint has to be violated. This
means the following sum has to be as small as possible, possibly less than 1:

P BCTTER FORMULATONS | ADD ( paden el Lo [4..;«1-.;,‘:_:@;‘341 ®

? NS & Apini® =2 2l = LX)

The constraints ensure that the z; variables define a cover. Given the optimal integer solution z of the
problem, is the optimal value is smaller than 1, then the cover inequality defined by the optimal
solution is violated by x. Otherwise, if the optimal value is = 1, then there is no cover inequality
violated by x.

FORHULATLOM OF THE SEPARATION PESRLER AS AN L2
e

W= AVLLAL E—. (’(-—-'}-(_‘_-)-I—l_

=1
st > arz R4
e boAl

We can then decide if there is a cover inequality violated by x (and find it) by solving the integer linear
programming problem (5)-(8). Note that this problem is very similar to the original knapsack problem
(1)-(4), and therefore it would probably be better to solve directly the original problem rather than
solving a similar problem just to find a new inequality to include in the formulation (and then iterate
this procedure!). Nonetheless, we will see below that this approach is much more promising in more
general situations.
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If the equality is greater than 1, no violated covers are present. Find the inequality that violates the
most the cover.

5 b
- IE wY < 1‘, ADD CoveER INCRUuATY Folkr C = {A._ =‘f..h_, +=. ‘i((
OTHER WISE MO ViocaTeD COovdl (tmEayAauTty ExigTs

Let’s integrate such separation procedure by decomposition by integrating it into a cutting plane
procedure:

WASTEL : SOLVE —THE UNE AL REWMXATLON

SLAKE : SoLUC THE SEPARATION PROBLEM

TRANSTORM INTD A =R-0/4 ! o= A= 9o
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e Ilr . o= p
-} ~~ [ — N >
e 2[4 )2l o mane — 2> (43 (A-y )
o= A L= o i
’ = f, — -
o = ; |/ == ) + L I—H_l_le . Meu b eI (’f—k_ ,"'—!
- - g
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-2 Al =S a (Ay) =2 al ~ 2 Ay —FHfL =D
=1 C=a £ Cxy ey
An e ’ i 3
B ~ ( —_ & - .Q )
L Ny . - L, <~ PJ

o C
SOLVE IMPRED FORMULAT O

it _‘Z‘c:s

*x USE €.c, DL, or WTiNG PAVE wiTH aoholy et

D Ma stee | —2—Df staue
i APh C To MayT™R

w4

CWE BoMaT Eoul (£ THE | RPEOWED FORMHUMATION (& MTCHL

It can be interesting to restrict the execution time then use Gomory cuts to make the procedure faster.
Or even, use the same formulation then add Branch-and-Bound. Note that this problem is very similar
to the original knapsack problem (1)-(4), and therefore it would probably be better to solve directly the
original problem rather than solving a similar problem just to find a new inequality to include in the
formulation (and then iterate this procedure! This adds the same complexity into the same problem.

9.3 COVER INEQUALITIES FOR GENERAL BINARY PROBLEMS AND GENERAL PROCEDURE

Consider a general integer linear programming problem in which all variables are binary:
T. (9)

(10)
..... n, (11)
..... n. (12)

max ¢ T

=

m A A
N o~
o
|
-

s.t. Az <

0< ;<

[
.

T

where 4 = 0.

- Acrucial observation is that every single constraint of the system Ax < b can be seenas a
knapsack-type constraint of the form (2)

- In other words, if we replace the system Ax < b with any of its constraints, and remove all the
others, we obtain a relaxation of the problem that looks exactly like a knapsack problem

- ltisthen possible to add to the formulation the cover inequalities associated with each of the
knapsack problems obtained this way (i.e., removing all constraints but one)
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- The number of possible cover inequalities will be huge, but we can employ the approach
described above to add the inequalities only when they are really needed

oM
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e e, b Z 0O, ¥ie, «
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Suppose that we have solved the continuous relaxation (9) — (11), thus obtaining a non-integer
solution x.

- Foreach knapsack problem obtained by removing all the constraints of the system Ax < b
except one, we ask ourselves whether there is a cover inequality violated by x

- Tothis purpose, it is sufficient to solve a problem of the form (5) — (8)

- Ifthe optimal value of this problem is smaller than 1, then we have found a cover inequality
violated by x that can be added to the formulation; otherwise there is no cover inequality
violated by x

- We can then solve the new continuous relaxation (including the cover inequalities that have
been added) and iterate this procedure until the current solution satisfies all cover inequalities

Basically, each inequality is a one-dimensional knapsack problem (NP-hard in its weak formulation) —
this is the following algorithm, represented in both ways:

[
MASTER PROPLE M ST wE = M Zfﬂ—xﬂﬂ
<=
MP = muads <x O~
s s.h% a2 2 44
- :e401) 2t
o P xv | X" EE e
[ ¥

(e o] [ ]

G oruk2L J,Cla-w?,_lj_ INEE I Con or w21

N
ADD i, Cy - Cwn TomP |[FOLEE Sl solve M wime » €Z™

COVER. ADDED

The diagram shows a clear iterative process starting with a Master Problem (MP) defined as max c¢Tx
over a feasible region P. When we solve this MP, we get a solution x* in E™ space.

This solution then feeds into multiple subproblems. The diagram specifically shows their
mathematical formulation.

Once these subproblems are solved, they generate columns which are added back to the Master
Problem. The process then follows one of two paths:

- If new columns were found, we loop back to solve the enhanced Master Problem
- If no columns were found ("NO COLS"), we solve a final version of MP with and terminate

Add all possible cover inequalities, then get an improved formulation after some time.
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Now, we give the general cutting plane procedure:
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Generation of cover inequalities

1. Solve the continuous relaxation (9)-(11) and let 7 be the optimal
solution obtained.

2. If T is integer, then STOP: optimal integer solution.

3. For each constraint of the system Ar < b, solve the corresponding
integer linear programming problem (5)-(8) (where ay,..., a, and 3 are
the coefficients and the right-hand side of the constraint). Let Z
be the optimal integer solution obtained.

4. If the optimal value of problem (5)-(8) is smaller than 1, then Z
gives a cover inequality violated by Z, defined by C'={i:z = 1}.

5. If for all the problems (5)-(8) solved at the previous step the
optimal value is > 1, then there is no cover inequality violated
by Z: STOP.

6. Add to the formulation all the cover inequalities found above, solve
the new linear programming problem, let 7 be its optimal solution
and go to step 2.

You can always separate such knapsack problem once it has been found. With the above algorithm
we have to solve many problems of the form (5)—(8), which are integer linear programming problems
and therefore hard in general.

- However, problem (5)—(8) is one of the simplest ILP problems and therefore, although in
principle an exponential time might be needed to solve it, in practice an optimal solution can
be found in a reasonable amount of time

- Asseen above, the algorithm terminates when the current solution does not violate any cover
inequality

o Note however that when this happens, x might still be non-integer, because the cover
inequalities are not sufficient to describe the ideal formulation of the problem (which
is not known

- Of courseitis possible to stop the algorithm before its natural termination if we think that the
inequalities that we have added are sufficient to give a good formulation of the problem. In

both cases, if x is not integer, we can apply the Branch-and-Bound method
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- Thefactthat some cover inequalities have been added allows us to start from a better
formulation and usually makes the Branch-and-Bound method terminate in a shorter time

—‘ﬁ: E.a.. MAx TIME , MAxX (TER , MivhuH URBR . IHPROVE T,
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The procedure shown in the flowchart illustrates an iterative optimization process that starts with
solving a relaxed linear program (LP), then systematically strengthens it by adding cuts when
fractional solutions are found.

- The method continues in a cycle — solving the improved LP, checking if the solution is integer,
and either adding more cuts through separation procedures or terminating based on specific
criteria (like time limits or iteration counts)

- The process is guaranteed to converge to an optimal integer solution if the separation
procedures can provide an ideal formulation and no arbitrary stopping criteria are enforced

- This creates a powerful framework that bridges the gap between continuous and integer
solutions by progressively shaping the feasible region through strategically chosen cutting
planes — how to use them depends on the problem

9.4 HYBRID METHODS, EXERCISES AND CPLEX OUTPUT

The image presents two different but complementary approaches to solving integer linear
programming problems: Cut-and-Branch versus Branch-and-Cut. Let's understand what each does:

- Cut-and-Branch
o Thisis asequential approach
o We start with our ILP, apply cutting plane methods (CP) to strengthen the formulation,
and then use this improved ILP as input for a branch-and-bound (B&B) procedure
o Think of it as "clean up first, then solve" - we strengthen our formulation upfront before
trying to find the integer solution

- Branch-and-Cut (right side)

o This shows a more integrated approach. Instead of separating the cutting and
branching phases, we apply cutting planes throughout the branch-and-bound tree. At
each node we can generate cuts based on the current solution

o The branching decisions create new subproblems where we can again apply cutting
planes

o Here the formulation is strengthened with valid inequalities and the B&B is applied
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The key insight noted at the bottom is crucial: While cutting planes take time to generate, they improve
our bounds, potentially reducing the total nodes we need to explore in the branch-and-bound tree.
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Cutting plane approaches let us work with a single formulation instead of creating a potentially
massive branching tree.

- However, success hinges entirely on having separation procedures that can efficiently identify
violated inequalities

- The challenge lies in finding cuts quickly enough to justify avoiding branching, while ensuring
these cuts are strong enough to meaningfully improve the formulation

- This fundamental balance between speed of cut generation and strength of formulation
improvement determines whether cutting planes will outperform traditional branching
methods

We add here two things which might help on preparation — solving first the “exercises” (since this year
OPL was not done, I’'m gonna answer only the two questions present).

1. In which cases a cutting plane method is sufficient to solve an ILP?

The cutting plane procedure alone can provide the ideal formulation of the problem, meaning that all
generated cuts lead to a polyhedron whose vertices are all integer solutions. This occurs when the
separation procedures can identify all necessary valid inequalities to describe the convex hull of
integer solutions. Additionally, no artificial stopping criteria (like maximum time or iteration limits)
should be enforced, allowing the method to generate all required cuts.

However, it's important to note that this is relatively rare in practice. Even for well-studied problems
like the knapsack problem, cover inequalities alone do not provide the ideal formulation, as
mentioned in the provided text.
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2. How can we improve the performance of the branch-and-bound method for ILP using cutting
planes?

The performance of branch-and-bound for ILPs can be improved using cutting planes through two
main approaches:

- Thefirst approach is branch-and-cut, where we strengthen the initial formulation by adding
cutting planes before starting the branch-and-bound procedure
o This provides tighter bounds at the root node, potentially reducing the total number of
nodes that need to be explored in the branch-and-bound tree

- The second, more sophisticated approach is branch-and-cut, where cutting planes are
generated and added at each node of the branch-and-bound tree
o This continuously strengthens the formulation throughout the solution process,
providing tighter bounds at each node
o While this requires more computational effort to generate cuts at multiple nodes, it
can significantly reduce the total number of nodes that need to be explored, often
leading to faster overall solution times

In both cases, the key advantage comes from the improved bounds provided by the cutting planes,
which allow for more effective pruning of the branch-and-bound tree and consequently faster
convergence to the optimal integer solution.

We will now (lastly) discuss the OPL example of surgery rooms (seen here if you don’t remember),
which is important by the point of view of this course unit, since it allows us to understand the output
of a complex solution using a commercial solver like CPLEX.

File Modifica Esplora Cerca Esegui Finestra Guida

Fmi s | | iz oz [tvOvBivAvidvih viiveoow v

1@ OPL Projects 22 =& t @ opRooms.mod #
e v 8}
*~ @ Run Configurations 9
~BiConnoption])(dcia 10 int NumOp = 700;//500;//500;//150;//700;//250//500;//. . .;

@& opRooms.mod : CPL
£ opRooms150.dat
~ @ randomInstance

11 int Nroom = ftoi(round(NumOp/3.3));//45;//ftoi(round(NumOp/3.3));//...;
12 setof(int) I = asSet(1..NumOp); //operations

An e rr2aNn A e 1t an

& opRooms.mod : CPL
(@ timelimit.ops

- GiochiRO.exe - Shortautr [ Problemi B Scripting log 7 Solutions 7 Conflicts = Relaxations ! Engine log % @ Statistics “ Profiler [ Watson Machine Learning

B operating_rooms.p Presolve time = 5,50 sec. (1736,07 ticks)
& opRooms.mod : CPLEX Probing time = 0,09 sec. (35,55 ticks)
@ pulito.ops Clique table members: 2258.
—— MIP emphasis: balance o&timality and feasibility.
®Pro.. X =8 MIP search method: dynamic search.

% - Parallel mode: deterministic, using up to 8 threads.
¥ Root relaxation solution time = 1,16 sec. (533,73 ticks)

Name Value
Nodes Cuts/

Node Left Objective IInf Best Integer Best Bound ItCnt Gap

0+ 4] 77,0000 142061,0000 ---

X 0+ 4] 542,0000 142061,0000 ---
[4] 2] 605, 7500 299 542,0000 605,7500 2122 11,76%
o 0+ 2] 586,0000 605,7500 3,37%
%] 4] 605, 7500 390 586,0000 Cuts: 323 4144 3,37%
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Different things can be noticed here:

- Customized cuts are applied for the sake of separation procedure — a lot of separators are
present internally
- Forexample they can be customized as you can see here

it c & Moc . ne Y 2t C 2 opRooms G@timelimitops = & pulito.ops | -
Jype parameteridesaiptior Mathematical programming / Mixed Integer Programming / Limits Ssibefiovanni

@ Distributed parallel
~ & Simplex Constraint aggregation limit for cut generation 3
© General I Awuxiliary root threads 0
@ Limits .
BTslrances Number of cutting plane passes 0
v & Mixed Integer Proc Row multiplier factor for cuts -1.0
© General Candidate limit for generating Gomory fractional cuts 200
© Strategy
e Pass limit for generating Gomory fractional cuts 0
& Tolerances MIP node limit 9223372036800000000
& Time spent probing 1.0E75

12! Problemi E Scripting log £ Solutions # Conflicts = Relaxations ' Engine log ** # Statistics " Profiler & Watson Machine Learning
FlAr M1 ©SOVLVT [NVULI LTU J9U0 LUTIT T LULTIILD .

Reduced MIP has 1955 rows, 655775 columns, and 1311550 nonzeros.
Reduced MIP has 655775 binaries, @ generals, @ SO0Ss, and © indicators.
Presolve time = 3,72 sec. (1675,54 ticks)

Found incumbent of value 158,000000 after 6,02 sec. (2778,81 ticks)
Tried aggregator 1 time.

Detecting symmetries...

A lot of different cuts can exist:

MIP disjunctive cuts switch Do not generate disjunctive cuts vk
MIP flow covers cuts switch Do not generate flow cuts ~ | E
MIP Gomory fractional cuts switch Do not generate Gomory fractional cuts | E
MIP GUB cuts switch Do not generate GUB cuts | E
MIP implied bound cuts switch Do not generate implied bound cuts & F
Type of Lift and Project cut generation Do not generate o F
MIP local implied bound cut generation switch Do not generate local implied bound cuts & F
MIP multi-commodity flow cuts switch Turn off MCF cuts >

You see that the linear relaxation cuts away important portions, coming exactly up to the right solution
—the best bound of linear relaxation is 604.75 (number of nodes is increasing and the bound stays the
same, so good):

x o+ 4] 74,0000 142972 ,0000 ---
7] 7] 604,7500 290 74,0000 604,7500 1923 717,23%
. o+ 7] 575,0000 604,7500 5,17%
* o+ %] 586,0000 604,7500 3,20%
0 9 604,7500 389 586,0000 Cuts: 328 4115 3,20%
¥ 0+ 2] 595,0000 604 ,7500 1,64%
2} 7] 604,7500 316 595,0000 Cuts: 163 5264 1,64%
(7} 7] 604,7500 320 595,0000 Cuts: 145 6501 1,64%
(4} 2 604,7500 98 595,0000 604,7500 6501 1,64%
Elapsed time = 76,64 sec. (59279,29 ticks, tree = 0,02 MB, solutions = 4)
6 8 604,7500 114 595,0000 604 ,7500 6577 1,64%
10 12 604,7500 120 595,0000 604,7500 6611 1,64%
16 8 604,7500 117 595,0000 604,7500 6591 1,64%
20 16 604,7500 263 595,0000 604,7500 7599 1,64%
21 21 604,7500 250 595,0000 604,7500 7700 1,64%
50 34 604,7500 229 595,0000 604,7500 14381 1,64%
65 50 604,7500 257 595,0000 604,7500 15164 1,64%

It’s better for the bound to be a smaller number, which means | branched on the previous bound and
got a smaller value.
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10 FOR READING - IDEAL FORMULATIONS, ASSIGNMENT PROBLEM
AND TOTAL UNIMODULARITY (9)

Note: program was over before this. The professor did not dedicate much time to this, but in order to
wrap up properly everything, there are notes properly summarized on the non-relevant parts

In order to solve MILP problems, we need Branch-and-Bound, cutting planes or mixed techniques. Are
there cases in which we need simply the simplex method? This is possible when the vertices of the
linear relaxation are integer, meaning that the formulation is ideal.

We consider a minimization problem, with integrality requirements and a polyhedron associated to
linear relaxation. If formulation is ideal, the polyhedron is a convex hull, and all of these vertices are
inside of the feasible region. When does this happen?

IDEAL FORMULATION: A SUFFICIENT CONDITION

r T
g P Ax=b ®EaL <=> P =cowSO<) <=> yerhicay o.( E e
'IO Ak_ = l:; >x20 k___/—\r——J
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x2 0
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We get the particular case of totally unimodular matrices, in which for each square submatrix,

determinantis either 0,1, —1.

- Note that sub-matrices need not be composed of contiguous columns and rows. As a
consequence of this definition we have that every element of a totally unimodular matrix must
be 0,1 or -1, because submatrices of 1 X 1 must also satisfy the condition on the determinant

Determinant can be computed with Laplace rule, making a cofactor expansion:

TOTALLY UNIMODULAR MATRICES

(< = L =
DEE.: A cR™ ;s ToTawY wn robuw & &ED Aet(&) &llo 1, 1-}
SQUAQ.: TUBNA"HQA)C ) a-@(\

=L aj e fo+a —1§ (Aﬁcim{ﬂawmw der ()= > J &2 s ERREEEN @LJ

Exanple 4 [{l o ? j]sfu deF (a i AT R +C—l>’“*~lo'(—')=1i
e dot (9 )

dec C---) & -1, +, ol
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A 50 {7 ? I|J 1s NOT T, Cbﬁ(&j (-1 ; (-l) +C“) 4_- U0 = =P
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There is an important consequence to this:
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When Ais totally unimodular and b is an integer vector, all basic solutions of the system Ax = b are
integer-valued. This means the formulation is ideal - we don't need to explicitly enforce integrality
constraints. The proof of this relies on examining how basic solutions are constructed:

- Forany basis B of A, the basic solution is given by xB = B~'b,xN =0

- Since B is a submatrix of a TU matrix, det(B) must be -1 or 1

- The elements of B™' can be expressed as ratios of determinants: (B™")j = (-1)* det(Bi)/det(B)
- Since both numerator and denominator are 1, B~' contains only integers

- Therefore, xB =B~'b must also be integer when b is integer

A key theorem characterizes an important class of TU matrices: If a matrix A has only 0/1 entries with
at most two 1s per column, and its rows can be partitioned into two sets such that when a column has
two 1s, they occur in rows from different sets, then A is totally unimodular.

10.1 ASSIGNMENT PROBLEM

Let G = (V, E) be a bipartite graph, where V' is the vertex set and £ is the edge set.
Recall that “bipartite” means that V' ean be partitioned into two disjoint subsets Vi, V5
such that, for every edge uv € E, one of u and v is in V] and the other is in V5.

In the assignment problem we have [Vi| = |V,| and there is a cost ey, for every edge
uv € E. We want to sclect a subset of edges such that every node is the end of exactly one
sclected edge, and the sum of the costs of the selected edges is minimized. This problem
is called “assignment problem” because sclecting edges with the above property can be

interpreted as assigning cach node in V) to exactly one adjacent node in V, and vicee versa.

In a bipartite graph assignment problem, we aim to match elements from two sets while minimizing
total cost. The problem's incidence matrix is naturally totally unimodular due to its special structure.

- Theincidence matrix of any bipartite graph is totally unimodular

- This follows from the key theorem about 0/1 matrices with at most two 1s per column, as the
rows can be partitioned into the two node sets of the bipartite graph

- Each column (representing an edge) has exactly two 1s - one for each endpoint, occurring in
different partitions of the nodes

Due to total unimodularity, all basic solutions to the assignment problem's LP relaxation are naturally
integer-valued, meaning we can solve the assighment problem using linear programming methods like
the simplex algorithm without explicitly enforcing integrality constraints.
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More on the problem modeling:

To model this problem, we define a binary variable x,, for every v € V) and v € V5
such that uwv € F, where

1 if u is assigned to v (i.e., edge uv is sclected),
Ty = .
" 0 otherwise.

The total cost of the assignment is given by
g f‘”l""ilf"
uve !'—

The condition that for every node u in V) exactly one adjacent node v € V, is assigned

to v; can be modeled with the constraint

Z Tuw =1, uwe WV,

veEVo:uve ls

while the condition that for every node » in V5 exactly one adjacent node u € V) is
assigned to v, can be modeled with the constraint

Z Tuw =1, vEVy

ueVjuveld

The assignment problem can then be formulated as the following integer linear pro-

gramming problem:

min E G T

uveEl

Z T = 1. WEelV;

veVauvcls
Z Tw = 1, vEV; (1)
ueVijuvcls
T = 1, uvel,

T € &, uveEkRl.

Note that we can omit the inequalitics -, < 1 for every wv € F, as they are implied by

the other constraints.
This formulation of the problem is ideal, so | can discard the integrality constraint on the variables and
thus | can solve the model using the simplex method. We also have that the obtained constraint
matrix is totally unimodular.

This matrix is called the (indirect) graph incidence matrix and is also valid for graphs that are not
bipartite. If the graph is bipartite, the incidence matrix is TU. To represent oriented graphs in this way
the matter is slightly different. | use —1 in the row for the starting node and +1 in the row for the ending
node. For a directed degree, the incidence matrix is always TU, even if it is not bipartite.
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A bipartite graph and its incidence matrix are shown below.
U Us VU7 Vgl Uglly Uyly Uyl Ugls Vgl Uytiy

v, v (N 1 1 ] 0 0 ] () 0 ]
U9 () 0 1 1 (0 0 () 0 0
v, v, Uy (0 0 0 0 | | \] 0 0
' el O 0 0 0 0 0 1 1 1
v v, | 0O 0 0 1 0 1 0 0
' w|l 0 0 1 0 0 1 0 0 0
. v vz 0O 1 0 0 0 0 0 1 0
' | O 0 0 1 0 0 0 0 1

It can be casily checked that the assignment problem can be written in the form
minc!
AlG)r =1
x> )
z € ZIM,

where 1 denotes a vector whose components are all equalto 1.

10.2 TU MATRICES PROPERTIES AND OTHER PROBLEMS

Several fundamental properties preserve total unimodularity (TU). For a totally unimodular matrix A:

Row and column permutations preserve TU
Multiplication of rows/columns by -1 preserves TU
Matrix transposition preserves TU: ATis TU

Powbd-~

Augmentation with identity matrices preserves TU:
1. (4,1)is TU where I ism X m identity matrix
2. [A;I]isTU where I isn X nidentity matrix

The transportation problem naturally extends the assignment problem while maintaining totally
unimodular properties:

- Relaxes 1-1 matching to allow multiple units of flow

- Maintains bipartite structure between sources and sinks

- Supply/demand constraints preserve TU properties

- Integer-valued basic solutions when supplies/demands are integer

The network flow framework exploits a maximum flow structure:

- Givendirected graph D = (V, A) with capacity constraints c:
o Flow variables x: x,,,, represents flow on arc (u, v)
- Conservation constraints:
o Flow-in equals flow-out at all nodes except s, t
o Matrix representation A(D")x = 0 where D' includes s — t arc
- Capacity constraints: 0 < x,,,, < ¢y
- Matrix remains TU through property preservation
- Integer flows guaranteed when capacities are integer

The minimum cost flow has properties:
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- Combines flow conservation with arc costs

- TU property ensures integer flows with integer data

- Linear programming solution yields combinatorial optimality
- Polynomial-time solvability despite combinatorial nature

Also, there are circulatory properties

- Special case without source/sink nodes

- Allflows must be conserved at every node

- TU properties ensure integer circulation values

- Applications in periodic scheduling and resource allocation

The power of these formulations lies in reducing combinatorial problems to linear programs while
maintaining integer solutions through total unimodularity. This enables efficient solution methods that
leverage continuous optimization for inherently discrete problems.

This theoretical foundation explains why certain network optimization problems remain tractable
despite their combinatorial nature, bridging the gap between discrete and continuous optimization
through matrix properties.

On the next part: the TSP cannot be formulated with a totally unimodular constraint matrix (as it's NP-
hard). However, certain TSP relaxations/subproblems relate to network flows:

- 1-tree relaxations can be found using max flow techniques
- Assignment problem relaxations (which are TU) provide bounds
- Subtour elimination constraints conceptually relate to flow conservation
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11 FOR READING - EXACT METHODS FOR THE TSP — MODELS AND
METHODS (10)

Note: The part of “Exact methods for the Traveling Salesman Problem” is considered “For reading”
this year of the course, so definitely not gonna touch that into notes

(From Moodle in case you might be interested there are the PDFs, otherwise if you’re like me, have a
look at the lesson in older Moodle courses. | will provide a helper summary in any case)

TSP arises in two main variants: asymmetric (ATSP) with directed arcs and symmetric (STSP) with
undirected edges. Both share the challenge of subtour elimination but require different solution
strategies due to their structural differences.

Asymmetric TSP Methods

Constraint Generation Approach

The method builds on a key insight: without subtour elimination constraints, ATSP reduces to an
assignment problem with totally unimodular constraints. This leads to an iterative process:

1. Initial Solution Phase:

- Solve pure assignment problem relaxation
- Obtain integer solution efficiently via simplex
- ldentify any existing subtours

2. Constraint Addition:

- Add subtour elimination constraints only as needed
- Maintain integrality only on variables in these constraints
- Resolve increasingly constrained problems

3. Convergence:

- Process continues until obtaining Hamiltonian cycle
- Guarantees optimality through exhaustive constraint addition
- Oftenreaches solution before adding all possible constraints

Branch-and-Bound Strategy

This alternative approach exploits problem structure differently:
1. Relaxation Mechanism:

- Uses assignment problem as base relaxation
- Obtains valid lower bounds efficiently
- ldentifies subtours for branching decisions
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2. Branching Strategy:

- Selects a subtour in current solution
- Creates branches by prohibiting arcs from this subtour
- Implements prohibitions through cost modification (setting to infinity)

3. Tree Management:

- Maintains problem structure through modified costs
- Avoids explicit constraint handling
- Allows efficient node processing via assignment algorithms

Symmetric TSP Innovations

Advanced Relaxation Methods

The symmetric case permits specialized approaches:
1. Linear Programming Relaxation:

- Works with edge variables (reducing problem size)
- Uses degree constraints as base structure
- Dynamically adds subtour elimination as needed

2. Separation Procedure:

- Converts constraint identification to network flow
- Efficiently handles fractional solutions
- Provides strong cutting planes

Efficient Constraint Generation

The method employs sophisticated separation:
1. Maximum Flow-Based Detection:

- Constructs capacitated network from current solution
- ldentifies violated constraints through min-cuts
- Efficiently processes fractional solutions

2. Dynamic Implementation:

- Adds constraints iteratively
- Maintains problem tractability
- Focuses on most violated constraints

Branch-and-Cut: State-of-the-Art Integration

This combines the strengths of previous approaches:
1. Algorithmic Framework:

- Integrates LP relaxation with cutting planes
- Usesintelligent branching on fractional variables
- Inherits cuts through the branch-and-bound tree
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2. Implementation Features:

- Efficient linear programming solutions
- Strongvalid inequality generation
- Strategic constraint management

3. Practical Performance:

- Solves million-node instances
- Provides provable optimality
- Manages memory and computation trade-offs effectively

4. Advanced Components:

- Multiple cut families beyond subtour elimination
- Sophisticated separation algorithms
- Adaptive cut management strategies

This framework represents the current pinnacle of exact TSP solution methods, successfully bridging
theoretical insights and practical computing limitations. Its success demonstrates how deep
understanding of mathematical structure can lead to effective algorithms, though significant
computational resources may still be required for large instances.

The field continues to advance through:

- Newvalid inequality classes

- Improved separation algorithms

- Enhanced branching strategies

- More efficientimplementation techniques

To end this file — and also my Master/Bachelor notes, done for all courses up to now, below some
general interest links.

Optional reading: sample applications (free link from the Department network)

- Evolving Neural Networks Through Augmenting Topologies. (K.O. Stanley and R. Miikkulainen,
Evolutionary Computation)

- Data-driven matheuristic for the Air Traffic Flow Management Problem (L. De Giovanni, C.
Lancia and G. Lulli)

- Atwo-levellocal search heuristic for pickup and delivery problems in express freight trucking
(L. De Giovanni, N. Gastaldon and F. Sottovia, Networks)
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12 LAST MEETING OF THE COURSE

12.1 FIRST PART - HYBRID METAHEURISTICS

As noted here, the last part of this course revolves around “hybrid metaheuristics” (see here). We
would need some basic formal ideas of mathematics in order to get a grasp of the presented
concepts. These tools can be “combined” which starts from the statement of the problem (data),

providing a good solution. Let’s hybridize then, using the techniques as follows (reading some papers
with them:

- We can try to use trajectory methods for example
- Oreven use matheuristics — metaheuristics + math
o Exact methods to get information —then apply heuristics
o Problem-dependent elements are included only within the lower-level mathematic
programming, local search or constructive components

- Another interesting method might be kernel search (helping slides provided by Marsini,
researcher of UniTN)

o As present here by the abstract
= The centralidea is to use some method, for example, the LP-relaxation, to
identify a subset (named kernel) of promising decision variables and then to
partition the remaining ones into buckets

These are concatenated one at a time to the kernel in order to check whether
improving solutions can be found

Just to show - since they are internal of this course — some images coming from the presented slides.
The problem to be solved is this one:

Basic KS
®0000000C0

ition Algorithms

Mixed Integer Linear Problem (MIP)

max CTX

Ax <b
;>0 jel
x;€{0,1} jeB

z; >0 integer j€Z

@ When T = () we have 0-1 MIP

@ Binary variables model decisions of selecting/refusing items
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Here there is the buckets construction:

Kernel Search: PHASE 1 (Construction)

© Kernel Set Construction:

a) Sort variables according to a predefined criterion (LP values,
reduced costs)

I”ﬂﬂlI]Iﬂﬂuullﬂlu-...ulllllllll""

b) ldentify the Kernel Set (A) and partition remaining variables
into buckets

- We can use information coming from available data to help with the solution process. Such is
called data-driven optimization

o Data-driven is to use data as a means of production of extracted features through
scientific methods and apply them to problems to be solved

o These methods have certain applicability and advantages in the research of supply
chain management
Think about Al works, possibly as a way to learn from a part of your solution method
See the professor paper to get a grasp much better than this

When there is a problem:
- Spend time to read literature and engineer properly a good method

12.2 SECOND PART - TALKING ABOUT THE EXAM

In this case:

- Homework is ready and given to the professor
- The professor has an idea of the score (between 0 and 10)

First part of the exam is discussion about the homework - if the student is able to justify the final score
of the exercise. Once with this, there are questions during the course classes.

This year, as noted above, just the definition of total unimodularity and forward. But please, know the
general ideas/definitions or the modeling parts for the TSP (last topic above).

Given the professor nature, you might know at this point questions are made of reasoning, not only
exact concepts. It’s more of a discussion with technical aspects. For example:

- Inacolumn generation approach, can we use a heuristic method to solve the slave problem?
- Yes, slave problem has a negative reduced cost variable, then we apply heuristics; if no
negative cost variable was found, we cannot stop with linear relaxation, but using heuristics
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12.3 THIRD PART - TALKING ABOUT THE EXERCISE

Provide a report (unique) for both parts:

- How the model was implemented (not reporting it exactly) but if there were problems/issues
on the formulation

On the first part of the exercise:

Instances generation is important (something to take care of)
We have TSP in a specific drilling context
Instances should be coherent with that

- Random components should be present in this generation, depending on ways in which they
are generated

- Forexample, given the matrices sizes, holes are to be distributed uniformly at random

distances - this can be a good way, but maybe not the best way for electrical panels

Holes have to be distributed with some structure (square/circles, shapes even)

Perhaps this structure can help the finding of the solution of the TSP instance

If specific choices are made, please, report them (for example, if you don’t have time to
implement wanted number of instances say it)

On the second part of the exercise:

- Anybasic method is OK, but please consider adding things (Local Search with multistart, Tabu
Search with intensification, Genetic Algorithm hybridized with Local Search)

- Theidea should be simple (but not so much - not basic)

If you have doubts of any kind, the professor is definitely more than welcome to help you, soin

case of doubts, do it before the exam

Professor is open to discussion
Please deliver the full zip with the parts by mail complete with:

-  Code
- Report

The code MUST be compiled inside of the lab machines — before sending the exercise, make sure of
this. In case, provide him with instructions on how to execute.

Example: if exam is 30" of January, please deliver up until 27" — but professor may agree with you to
have a different date for both submission and examination.

If one delivers the projectis outside the exam dates, you can do it whenever you want. Normally, the
oral exam is inside of the official date but is to be agreed individually with the professor (as always
happens, but anyway).
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13 LABORATORY 1 - SOLVERS FOR MATHEMATICAL PROGRAMMING
(DOCPLEX)

We start from the definition of a solver: a software application that takes the description of an
optimization problem as input and provides the solution of the model (and related information) as

output.
Tables, graphs,
Mathematical |« 4 numbers!
model ~ s
~ 7’
"4 Model
Data _— SOLVER (SW) e = solutions
Optimization Problem solutions
problem

In particular, we’re interested in solvers which act on MILP problems, which are the most used in
practice:

e very efficient
e numerical stability
e easytouse or embed

They have had more than 1 000 000 000 speed-ups in the last 20 years, where thousands of variables
may be processed in order to express fast algorithms:

e hardware speed-up: x 1000
e simpleximprovements: x 1000
e branch-and-cut improvement: x 1000

Examples may be: Cplex, Gurobi, Xpress, Scip, Lindo, GLPK, Google OR Tools etc.

The core of lab units is not to implement solvers, but solver interfaces, so to build the model and

Solver interface \
t Tables, graphs,

simply call the software.

Mathematical i Data numbers!
model _ structures |
Model
Data ‘ oce

solutions
A Solver ”
T

\ 4 A 4

Optimization

Problem solutions
problem
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A commercial software for which we have the license is IBM Ilog Cplex, which is one of the first MILP
solvers. Some general features:

Includes state-of-the-art technology
One of the best solvers available (Gurobi, Xpress)

A list of possible interfaces is the following:

Interactive optimizer

OPL/AMPL/ZIMPL ... algebraic modelling language (close to writing models on paper)
C - APl libraries (Callable libraries)

C++ libraries (Concert technologies)

Python APls

Python (with docplex) / Java / .Net wrapper libraries

Matlab / Excel plugins

We are introduce to a magical Python interface called DOCplex, which is not compatible with Python
3.9 above versions and has caused in the lab a lot of trouble to different people

Important note: this year, only Docplex was done, while up to now (before 24-25), only OPL was done.
So, even in the assignment, you will see that “Docplex Guys” are the “OPL guys” of previous years.

In any case, it’s pretty simple and | will share some general info:

IBM Decision Optimization CPLEX Modeling for Python
Built upon the Cplex Python APls
Exploits Python syntax to provide “easy” and flexible encoding of the mathematical model
notation, e.g.:
> Dictionaries for sets of variables
» for...in...if... to encode “forall” quantifiers or sum indices
Ideal for prototyping and integration into “modern” applications
Documentation: docplex landing pages
» https://pypi.org/project/docplex/

» https://ibmdecisionoptimization.github.io/docplex-doc/
= Getting started with Docplex
= Mathe Programming Modeling for Python using docplex.mp

H Installation, e.g.
» pipinstalldocplex or
» conda install -c ibmdecisionoptimization docplex
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13.1 MAKE DocPLEX RUN!

Afirst crucial step for the PC in labs:

m To enable Cplex Studio at Lab: use Linux, run
> . cplex_env (notice “dot blank”)

Inside of labs, it’s important to first enable the cplex environment variable, check the path existence
and then execute —we will infact use VS Code here:

15598

oo
first.py - uql-:.monu-si - visual studie Code

@ example_farmer.py o

Py
ganess us/lo€ kiiop > @ first.py > -
el import Model

— e
G =
n: use/sbtn: fuse[bin: /sbins bun: fust/
oln

local /ba: fusefsbin: fusr [bin:/sb
nlpfhl:f;i/nzrlillfcu‘llﬂmlonlill/lLMI t')
jopt/(bn/TLOG/CPLEX_Studio2211/cplex/bla/x
tudla2211/0pl faplide
ar(name="vegetables”, 1b = @, ub = Non{
active optintzer 22.1.1.0 ar(name="meat”, b = @, ub = None)
er

ar(name="fruit", lb = 0, ub = None)

*XM + 7*xF

17 m.sg

Iz lvetlulnutnut = False)

sy ;.r.-q e T

2 OuTRur DEBUG consgy ¢ TERM
nandul@tdl:—/n =

Prtirse o “sKtop/docy

“Loandg Blex. "esources, 14 /o)

In general, as said, it works with Python 3.9 - so:

- Uninstall later versions from Programs

- Before uninstalling, in case for cleanup also remove pip, by opening a terminal and “uninstall
pip” (or suggestions given from the prompt)

- Searchfor 3.9 and download: https://www.python.org/downloads/release/python-390/

- Quickly reinstall the magic “pip” from here: https://phoenixnap.com/kb/install-pip-windows

- (here he himself asks you to add to the path, tell him yes)

- Do “pipinstall docplex” (once you are sure that “pip” has been installed correctly)

When in doubt:

- Addinthe PATH entry environment variables the path where Cplex is installed: C:\Program
Files\IBM\ILOG\CPLEX_Studio2211

- Thatwayyou can run a terminal by typing “cplex”

- Whenyou run, everything works
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The following is a complete example with comments of all the things done in the lesson, based on the
Farmer model, object of the first lesson:

from docplex.mp.model import Model

m = Model(name="Example model")

c_var =m.continuous_var()
i_var = m.integer_var()
b_var = m.binary_var()

expr_1=6*c_var +i_var-pow(3,2) * b_var

expr_2=10*c_var

m.add_constraint(expr_1 <= expr_2)

m.minimize(expr_1)

m.solve()

if m.solution ==

print("Problems! Status: ", m.get_solve_status())

if m.solution !=
m.print_solution()
sol=m.solution
print(sol[c_var])
print(sol.get_objective_value())

m.export_as_lp(basename='filename', path='path’, hide_user_names=
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m.solution.export('filename')

print(m.solution.to_string())
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14 LABORATORY 2 — SOLVERS: DOCPLEX (CONTINUATION)

Let’s start from the model we saw last time, so the farmer - given the problems about docplex, we
start from the same model:

Using a mathematical model: formulation

@ Declare "what" is the solution, instead of stating “how" it is found

@ What should we decide? Decision variables
xr 20, xp >0
@ What should be optimized? Objective as a function of the decision
variables
max 6000 x7 + 7000 xp (optimal total profit)
@ What are the characteristics of the feasible combinations of values for
the decisions variables? Constraints as mathematical relations
among decision variables

X + xp & 11 (land)
7xT < 70 (tomato seeds)
3xp < 18 (potato tubers)
10xr + 20xp < 145 (fertilizer)

The Python code is the following:

from docplex.mp.model import Model

m = Model(name="Farmer")

xT = m.continuous_var(name="ht of tomatoes", lb=0)
xP = m.continuous_var(name="ht of potatoes", (b=0)

revenue = 6000 * xT + 4000 * xP
m.maximize(revenue)

.add_constraint( xP + xT <= 11, ctname='land avail')

m (

m.add_constraint( 7*xT <=70)
m.add_constraint( 3*xP <= 18)
m.add_constraint( 10*xT + 20*xP <=145)

.print_information()
.export_as_Ip(".")
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Then, the actualfile .lp file is:
\ This file has been generated by DOcplex
\ ENCODING=IS0-8859-1

\Problem name: Farmer

Maximize
obj: 6000 ht of tomatoes + 4000 ht of potatoes
Subject To
land avail: ht of tomatoes + ht of potatoes <= 11
c2: 7 ht of tomatoes <= 70
c3: 3 ht of potatoes <= 18

c4: 10 ht of tomatoes + 20 ht of potatoes <= 145

Bounds

End

We check the availability of the solution:

if m.solution !=

m.print_solution()

print(m.solution(xT))

We have to generalize the way we create models, like the following optimal production mix:

One possible modeling schema: optimal production mix

@ set [: resources I = {rose, lily, violet }
@ set J: products J = {one, two}
@ parameters D;: availability of resource i € / e.g. Dipse =27

@ parameters P;: unit profit for product j € J e.g. Pone = 130

@ parameters Qji: amount of resource i € | required for each unit of

product j € J e.g. Qroseone = 1.5, Qh'.f_v two = 1
@ variables x;: amount of product j € J Xones Xtwo
max Z Pix;
jed
st. Y Qp < D V iel
jed
x;€Ry [Zy | {0,1}] V jeJ
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This way we can solve several problems and examples; it’s advisable to use dictionaries as structure
to represent multiple instances of data.

The complete code actually does basically the same things, but using dictionaries for the data and
also getting the status of the solution:

from docplex.mp.model import Model

| =['land', 'tomato seeds', '‘potato tubers', 'fertilizer']
J=['tomatoes', 'potatoes']

D ={'land": 11, 'tomato seeds':70, '‘potato tubers': 18, 'fertilizer': 145}
P ={'tomatoes': 6000, 'potatoes':7000}
Q={("land", "tomatoes"): 1,

'tomato seeds", "tomatoes"): 7,
"potato tubers", "tomatoes"): 0,

'fertilizer", "tomatoes"): 10,

'‘tomato seeds", "potatoes"): 0,

potato tubers", "potatoes"): 3,

(
(
(
("land", "potatoes"): 1,
(
(
(

"fertilizer", "potatoes"): 20}

m = Model(name="prod mix")

x ={j: m.continuous_var(name="x({0})'.format(j)) for j in J}

m.maximize(m.sum(P[j] * x[j] for jin J))

foriinl:
m.add_constraint(m.sum(QI(i,j)] * x[j] for j in J) <= D[i])

m.print_information()

m.export_as_Lp(".")

m.solve()

if m.solution !=
m.print_solution()
forjinlJ:
print(m.solution[x[j]], "is the qty of product", j)
else:
print(m.get_solve_status())
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If we change only a bit of the domain to try to solve the following problem, integer variables need to be
used, changing the sets a bit and the following:

Example

A perfume firm produces two new items by mixing three essences: rose,
lily and violet. For each decaliter of perfume one, it is necessary to use 1.5
liters of rose, 1 liter of lily and 0.3 liters of violet. For each decaliter of
perfume two, it is necessary to use 1 liter of rose, 1 liter of lily and 0.5
liters of violet. 27, 21 and 9 liters of rose, lily and violet (respectively) are
available in stock. The company makes a profit of 130 euros for each
decaliter of perfume one sold, and a profit of 100 euros for each decaliter
of perfume two sold. The problem is to determine the optimal amount of
the two perfumes that should be produced.

max 130 xone + 100 Xtwo objective function
s.t. 15xone + Xtwo < 27 availability of rose
Xone + Xtwo <21 availability of lily
03xone + 05xmo < 9 availability of violet
Xone Xtwo = O domains of the variables

In this case we also make checks upon the nature of the actual domain:

from docplex.mp.model import Model

I =['rose', 'lily', 'violet']
J=['one', 'two']

D ={rose': 12.5, 'lily': 21, 'violet': 9}
P ={'one'": 130, 'two': 100}
Q={

(‘'rose’, 'one'): 1.5, ('lily', 'one'): 1, ('violet', 'one'): 0.3,
(

(‘'rose’, 'two'): 1, ('lily', 'two"): 2, (‘violet', 'two'): 0.5

}
decision_domain = "integer"
m = Model(name="prod mix")

if decision_domain == "integer":

x ={j: m.integer_var(name=f'x_{j}') forj in J}
elif decision_domain == "continuous":

x ={j: m.continuous_var(name=f'x_{j}') forjin J}

x ={j: m.continuous_var(name=f'x_{j}) forjin J}
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m.maximize(m.sum(P[j] * x[j] for j in J))

foriinl:
m.add_constraint(
m.sum(QJi,j] * x[j] for jinJ) <= D[],

ctname=f'Constraint_{i

m.print_information()

m.export_as_Llp('./prod_mix.lp")
solution = m.solve()

if solution:
m.print_solution()
forjinlJ:
print(f"{x[j].solution_value is the quantity of product {j}")
else:
print("No solution found.")
print("Solve status:", m.get_solve_status())

Now we go into the detail of the following model:

Example

We need to prepare a diet that supplies at least 20 mg of proteins. 30 mg
of iron and 10 mg of calcium. We have the opportunity of buying
vegetables (containing 5 mg/kg of proteins, 6 mg/Kg of iron e 5 mg/Kg
of calcium, cost 4 E/Kg), meat (15 mg/kg of proteins, 10 mg/Kg of iron e
3 mg/Kg of calcium, cost 10 E/Kg) and fruits (4 mg/kg of proteins, 5
mg/Kg of iron e 12 mg/Kg of calcium, cost 7 E/Kg). We want to
determine the minimum cost diet.

min 4xy + 10xy + Tx¢ cost
s.t. 5xy + 15xpy + 4xg > 20 proteins
bxy + 10xy + bBx > 30 iron
5xy + 3xy + 12x > 10 calcium
Xy XM xx = 0 domains of the variables
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@ set /: resources I={V,M,F}

@ set J: requests J = {proteins, iron, calcium}

e parameters C;: unit cost of resource i € |

@ parameters R;: requested amount of j € J

@ parameters A;: amount of request j € J satisfied by one unit of
resource | € /

@ variables x;: amount of resource i € /

Z C,'X,'

iel
s.t.

> Ajxi > R; Vied
iel
XjER+[Z+|{0,1}] Viel

The complete version of the code uses the shortcuts able to index the variables present inside of the
constraints so to create a coherent model:

from docplex.mp.model import Model

| = [IVI, |M|’ IFI]
J=['pro', 'iron’, 'cal’]

C={V':4,'M'":10,'F': 7}

R ={'pro': 20, 'iron": 30, ‘cal': 10}

A={
('V', 'pro’): 5, ('V', 'iron'): 6, ('V', 'cal'): 5,
('M', 'pro'): 15, (‘M', 'iron'): 10, (‘M 'cal’): 3,
('F', 'pro'): 4, ('F', 'iron"): 5, ('F', 'cal'): 12

}

decision_domain = "continuous"

m = Model(name="min_cost_diet")

if decision_domain =="integer":

x =m.integer_var_dict(keys=l, lb=0, name="x")
elif decision_domain == "binary":
x=m.binary_var_dict(keys=I, name="x")
else:

x = m.continuous_var_dict(keys=l, lb=0, name="x")

m.minimize(m.sum(Cl[i] * x[i] foriin [))
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forjinJ:

m.add_constraint(m.sum(A[i,j] * x[i] for i in l) >= R[j], cthname=f"min_{j}")

m.print_information()
m.export_as_Llp('./min_cost_diet.[p")
solution = m.solve()

if solution:

m.print_solution()

foriinl:

print(f"{x[i].solution_value kg of {i}")

print(f"Total cost: {solution.objective_value )
else:

print("No solution found.")

print("Solve status:", m.get_solve_status())

Another covering schema example is the following:

| set od potential locations (/ = {1,2,...,6}).

x; variables, values 1 if service is opened at location i/ € [, 0 otherwise.

mn x + x + x3 + xa + x5 + X

s.t.

X1 4+ X > 1 (cover zone 1)
x4+ x + x = 1 (cover zone 2)
x3 + xa > 1 (cover zone 3)
x3 + xa + x5 > 1 (cover zone 4)
xx + x5 4+ x = 1 (cover zone 5)
X + x5 + x5 = 1 (cover zone 6)

X , x , xa , x , xs , x € {01} (domain)

Here, a possible solution is:

from docplex.mp.model import Model

m = Model(name="Emergency")

|=[1l2)3)4’5’6]

x =m.binary_var_dict(keys=I, name="x")

m.minimize(m.sum(x[i] foriin [))

m.add_constraint(x[1] + x[2] >= 1)
m.add_constraint(x[1] + x[3] >= 1)
m.add_constraint(x[2] + x[4] >= 1)
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m.add_constraint(x[3] + x[4] >= 1)
m.add_constraint(x[5] + x[6] >= 1)

m.print_information()
m.export_as_Llp('./emergency.lp')
solution = m.solve()

if solution:
m.print_solution()
foriinl:
print(f"{x[i].solution_value is the quantity of product {i}")
else:
print("No solution found.")
print("Solve status:", m.get_solve_status())

Exploiting the fact this is all of a matrix of coverage, we can further minimize the model such as:

from docplex.mp.model import Model

| =range(1, 7)

coverage = {
1:[1, 2],
2:[1, 2, 6],
3:[3, 4],
4:[3, 4, 5],
5:[4, 5, 6],
6:[2, 5, 6]

m = Model(name="Emergency Location")

x =m.binary_var_dict(l, name="x")

m.minimize(m.sum(x[i] foriin [))

forzone in range(1, 7):
m.add_constraint(
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m.sum(x[i] foriin | if zone in coverage[i]) >=1,
ctname=f"cover_zone_{zone}"

solution = m.solve()

if solution:

print("Optimal solution found:")

foriinl:

if x[i].solution_value > 0.5:
print(f"Open emergency service at location {i}")

print(f"Total number of locations: {solution.objective_value}")
else:

print("No solution found")

print("Solve status:", m.get_solve_status())

m.export_as_lp("emergency_location.lp")

The professor used basically a similar previous approach:

from docplex.mp.model import Model

1=01,2,3,4,5,6]
J=01,2,3,4,5, 6]

C={i:1foriinl}
P={j:1forjinlJ}

m = Model(name="Emergency Location")

x =m.binary_var_dict(l, name="x")
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m.minimize(m.sum(C[i] * x[i] foriin I))

forjinJ:
m.add_constraint(
m.sum(A[i,j] * x[i] foriinl)>=1,
ctname=f"cover_zone_{j}"

solution = m.solve()

if solution:
print("OPTIMAL SOLUTION:")
foriinl:
if x[i].solution_value > 0.5:
print(f"1: Open emergency service at location {i}")
else:

print(f"0: Do not open emergency service at location {i}")

print(f"Total cost: {solution.objective_value}")
else:

print("No solution found")

print("Solve status:", m.get_solve_status())

m.export_as_Llp("emergency_location_detailed.lp")
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15 LABORATORY 3 — TRANSPORTATION AND DOMAINS CONSTRAINTS

We are going to implement the following schema:

One possible modeling schema: transportation

@ set [: origins factories | = {A, B, C}

@ set J: destinations stores J = {1,2,3,4}

@ parameters O;: capacity of origin i € / factory production
@ parameters D;: request of destination j € J store request

@ parameters Cj: unit transp. cost from origin i € [ to destination j € J

@ variables x;;: amount to be transported from i € [ to j € J

min ZZCng
iel jeJ
5.t.
ZXUEDJ' Vield
el
> X <0 Viel
Jjed
xj e R [Z |{0,1}] VieljeJ

The complete implementation of the modelis:

from docplex.mp.model import Model
import json
import ast

O={}

D={}
C ={(i,j): 1 foriin I forjin J}

decision_domain =

m = Model(name='transportation’)
if decision_domain == "discrete":

x =m.binary_var_dict(keys1=l, keys2=J, name="x", ub = None, name = "xXTR")
elif decision_domain == "cont":

X =m.continuous_var_dict(keys1=l, keys2=J, name="x", ub = None, name = "xTR")
else:

x =m.binary_var_dict(keys1=l, keys2=J, name="x", ub = None, name = "xTR")
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m.minimize(m.sum(CIi,j] * x[i,j] foriin | forjinJ))

forjinJ:
m.add_constraint(m.sum(x[i,j] foriin 1) >= D[j], ctname="destination_%s"%);)

foriinl:
m.add_constraint(m.sum(x[i,j] for j in J) <= O[i], ctname="origin_%s"%i)

print(m.export_to_string())
m.solve()

foriinl:
forjinlJ:
print("x(%s, "% (i, j, X[i,j].solution_value))

Then, we import data from a file and then it is being used as control, with variables getting values from
files:

from docplex.mp.model import Model
import json
import ast

with open(‘refr.json') as f:
data = json.load(f)

| = data["l"]
J = data["J"]

o_list =data["o_Llist"]
O ={I[i]: o_Llist[i] fori in range(len(l))}

d_list = data["d_Llist"]
D = {J[j]: d_Llist[j] for j in range(len(J))}

c_matrix = data["c_matrix"]
C ={(I[i1,I[i]): c_matrix[i][j] for i in range(len(l)) for j in range(len(l))}

decision_domain =
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m = Model(name="transportation')
if decision_domain == "discrete":

x =m.binary_var_dict(keys1=l, keys2=J, name="x", ub = , hame = "xTR")

elif decision_domain == "cont":
X =m.continuous_var_dict(keys1=l, keys2=J, name="x", ub = , hame = "xTR")

else:
x =m.binary_var_dict(keys1=l, keys2=J, name="x", ub = , hame = "xTR")

m.minimize(m.sum(CIi,j] * x[i,j] foriin | forjinJ))

forjinJ:
m.add_constraint(m.sum(x[i,j] foriin 1) >= D[j], ctname="destination_%s"%);)

foriinl:
m.add_constraint(m.sum(x[i,j] for j in J) <= O[i], ctname="origin_%s"%i)

print(m.export_to_string())
m.solve()

foriinl:
forjinlJ:
print("x(%s, "% (i, j, X[i,j].solution_value))

Now try to satisfy the model with additional constraints:

m Transportation model

Basic model [transport_basic.py , transport_basic.json]

Remove expensive (over a parametrized threshold) links

Additional constraint 1: if the cost of link from i to j is at most LowCost, then

the flow on this link should be at least LowCostMinOnLink

Additional constraint 2: destination SpecialDestination should receive at least

MinToSpecialDest units from each origin, but for origin SpecialOrigin
[transport_dict.py]
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Now, starting from the JSON file:

"modelname" : "move refrigerators",
"decision_domain": "discrete",

A8, C,
"J":[1,2,3,4],

"o_list": [50,70,30],
"d_list": [20,60,30,40],

"c_matrix": [
[6,8,3,2],
[4,2,1,3],
[4,2,6,5]

I
"cost_threshold": 0.5,
"low_cost": 2,
"low_cost_min": 1

We write the entire file transport_py:

from docplex.mp.model import Model
import json
import ast

with open('refr.json') as f:
data = json.load(f)

| = data["l"]

J = data[")"]

o_list =data["o_Llist"]
O ={l[i]: o_Llist[i] for i in range(len(l))}

d_list = data["d_Llist"]
D = {J[j]: d_list[j] for j in range(len(J))}

c_matrix = data["c_matrix"]
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___comment01": "sets of origin factories | and destination stores J (a set is given as ordered list = array)",

___comment02": "arrays of factories' capacity and stores' request (follow the order in the related sets)",

___comment03": "factory-to-store cost matrix (matrix indexes follow the order in the related sets)",
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C ={(I[i1,1[]): c_matrix[i][j] for i in range(len(l)) for j in range(len(l))}

cost_threshold_percent = data["cost_threshold_percent"]
ActiveODPairs = [(i,j) foriin | for j in Jif C[i,j] <= cost_threshold_percent * max (C[o,d] for o in | for dinJ)]

decision_domain =

m = Model(name="transportation’)

if decision_domain == "discrete":

x =m.integer_var_dict(keys = ActiveODPairs, name="x", lb =0, ub = , hame = "XD")
elif decision_domain =="cont":

x = m.continuous_var_dict(keys = ActiveODPairs, name="x", lb =0, ub = , hame = "XC")
else:

x =m.binary_var_dict(keys = ActiveODPairs, name="x", name = "XB")

m.minimize(m.sum(Cli,j] * x[i,j] for i,j in ActiveODPairs))

forjinJ:

m.add_constraint(m.sum(x[i,j] for i in I if(i,j) in ActiveODPairs) >= DJ[j], ctname="destination_%s"%j)

m.add_constraints(m.sum(x[i,j] for j in J if(i,j) in ActiveODPairs) <= O[i] foriin [)

L = data["LowCost"]
T =data["LowCostMinOnLink"]

m.add_constraints(x[i,j] >= L[i,j] for i,j in ActiveODPairs if C[i,j] <=T)

sD = data["SpecialDestination"]
sO = data["SpecialOrigin"]
minSD = data["MinSpecialDestination"]

m.add_constraints(x[i,sD] >= minSD foriin | ifi !=sO and (i,sD) in ActiveODPairs)

m.print_information()
m.export_as_lp(path="transport.lp')
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fori,j in ActiveODPairs:
print("x_%s_%s = "% (i, j, X[i,j].solution_value))
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16 LABORATORY 4 - FIXED COSTS MODEL AND EFFICIENT STRUCTURES

We want to implement this model:
Modeling fixed costs: binary/boolean variables (linear)
@ set |: potential locations
@ parameters W, F;, G, R;, “large-enough” M (e.g. M = argmaxic{W/C}
@ variables x;: size (in 100 m?) of the store in i € /

@ variables y;: taking value 1 if a store is opened in i € | (x; > 0), 0 otherwise

max E R; x;

icl
s.t.
Y Gxi+Fy<w budget
iel
x <My, VYiel BigM constraint / relate x; to y;
Zy; <K max number of stores
icl

xeR,, yie{0,1} Viel

We use the following JSON file:

"modelname" : "fixed cost location",

____comment@l": "set of potential locations' names. Each location is identified
by its position, first position is ©",

"I names":
["loce","locl","loc2","loc3","loc4","loc5","1loc6","1loc7","1oc8","1oc9" ],

___comment@2": "available budget",
"W
" __comment@3": "lists of fixed costs, variable costs and revenues for each
location (euro per 10@sqgm)",

"f list": [1000,1210,2000,1500,1350,1560,1450,2100,1720,1110],

"c_list": [ 250, 230, 190, 210, 200, 210, 260, 255, 220, 270],

"r_list": [3000,4000,6600,5000,6000,6500,3500,2500,2600,4700],

" comment@4": "PLUS: maximum and minimum number of open locations and their
minimum extension",

"max_num_open": 5,

"min_num_open": 3,

"min_size to_open": 15
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The model we are trying to implement is present here:

m Facility location with fixed costs

Preprocess data to define data-dependent big-M constants
[facility loc_basic.py]

Additional constraint: at most/least max/min number of open locations
[facility_loc_plus.py]

The actual model follows:
from docplex.mp.model import Model

import json

with open('facility loc_basic_and_plus.json', 'r') as file:
data = json.load(file)

I names = data['I names']

I range(len(I_names))

data[ "W"]

data[ 'f_list']

data['c_list']

data['r_list']

data[ "max_num_open']
minLoc = data[ 'min_num open']
min_size = data['min_size to open']

[(W - F[i])/C[i] for i in I]
Model (name="modelname")
m.continuous var list(I, name='x', 1b=0)

m.binary_var_list(I, name='y')

.maximize(m.sum(R[i]*x[i] for i in I))

.add_constraint(m.sum(C[i]*x[i] + F[i]*y[i] for i in I) <= W)

for i in I:
m.add_constraint(x[i] <= M[i]*y[i])

m.add_constraint(m.sum(y[i] for i in I) <= K)
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m.add_constraint(m.sum(y[i] for i in I) >= minLoc)

for i in I:
m.add_constraint(x[i] >= min_size/100 * y[i])

m.print_information()

if m.solve():

m.print_solution(print_zeros=

citytoshow = "locel"

posOfCity = I names.index(citytoshow)

print(“"the size of", citytoshow, "is", m.solution[x[posOfCity]])
else:

print("no sol", m.get_solve_status())

Remember that operations done here should use the correct data structure (which are not
dictionaries, indexes, etc.), considering evaluating solutions might be very time-consuming. So, moral
of the story: Python is not good for efficiency.

Herem the first part of the exercise is implementing a model, while the second part is implementing
heuristics. For example, Computer Scientists are required basically to use C++, according to the
following:

Lab organization: DOcplex, Cplex C APIs or what?

The course unit presents DOcplex and the Cplex C APIs (Callable Libraries) as tools for
Lab Exercise Part | (implementation of a mathematical programming model)

Other tools may be used (Cplex Concert Technologies or OPL or Matlab connector or
AMPL or Gurobi APIs etc.), to be discussed and agreed with the teacher

Follow the table to determine your tool! Next Lab classes will concern Cplex APIs or
DOcplex or (assisted self-)learning agreed alternative tools (see proposed exercises)

Master Can&want Can&want

Degree Cor Ci+ python priority 1 priority 2 priority 3
Yes Yes/No Cplex C APIs
c::?::’::r No Yes Cplex C APls DOcplex (with lists)
No No Cplex CAPIs  DOcplex (with lists) = agreed*
Yes Yes C APIs or DOcplex (your choice) agreed
Others Yes No Cplex C APIs agreed
No Yes DOcplex agreed
No No agreed
using C APIs is appreciated! © r convincing the teacher
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17 LABORATORY 5 - CPLEX APIsS — INTRO, CONSTRAINTS AND
MODEL EXAMPLE

Note: for people using Windows, you have to use Visual Studio 2022, with C++ installed. In this case,
you will execute everything safely, using also this chapter as entire reference.

The professor provided us with an example folder, complete with a file called “cpxmacro.h” and also
some other files useful for compilation. It’s necessary to have a main() method, using for example

something like this:

t Stark

EXPLORER

o

i b e el b e
DU R LR @O0 0 U W R g
5

v MM2425 Ry

B addrow.xls

M Makefile
& moving_scaffolds NOMAP.cpp

G+ meving_scaffolds_TODO.cpp

ed

T

* @file first.cpp

* @brief basic use of newcols and addrow
* to solve the model

. max ZoxFa 3ol e

¢ maincpp X

X1 + x2 e=52 ---> X1 # X2 - 52 ==0
X2 + 9 vyl +9 y2 + 8Bw=2

8 yl >= -1

-4yl + 72 +5w==28

x1,x2 >=0

¥yl ==0

Z in {0,1}

w in Z+

22 using namespace std;

Note: consider the existing ltalian notes (found it myself and put on MEGA); on this part, they are made

really well.

The following are basic objects which are to be used inside of Cplex files:

m C API towards LP/QP/MIP/MIQP algorithms
m Basic objects: Environment and Problem

m Environment: license, optimization parameters ...

m The two objects can be accessed (e.g. to add
variables or constraints, or to solve a problem) via
the functions provided by the API

m (Almost) all the API functions can be called as

m Problem: contains problem information: variables,

constraints ...)

m (at least one) environment and problem must be
created

CPXENVptr CPXopenCPLEX / CPXcloseCPLEX

CPXLPptr CPXcreateprob / CPXfreeprob

int CPXfuncName (environment[,problem],...);

\ \
[Besic objects |

/
=

’ Resources: cpxmacro.h I

Consider the Cplex APIs are inside of the file “cpxmacro.h”, present inside of the directory structure of

the professor. The following is its content:

#ifndef
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#define CPX_MACRO_H

#include <cstring>
#include <string>

#include <stdexcept>
#include <ilcplex/cplex.h>

#define STRINGIZE(something) STRINGIZE HELPER(something)
#define STRINGIZE HELPER(something) #something

CPXENVptr Env;
CPXCENVptr CEnv;
CPXLPptr Prob;
CPXCLPptr CProb;
/* Cplex Error Status and Message Buffer */

extern int status;

const unsigned int BUF_SIZE = 4096;

extern char errmsg[BUF_SIZE];

/* Shortcut for declaring a Cplex Env */
#tdefine DECL_ENV(name) \
Env name = CPXopenCPLEX(&status);\
if (status){\
CPXgeterrorstring(NULL, status, errmsg);\
int trailer = std::strlen(errmsg) - 1;\
if (trailer >= 0) errmsg[trailer] = "\@';\
throw std::runtime_error(std::string(_FILE_ ) + ":" + STRINGIZE(__LINE_ ) + ":
+ errmsg);\

}

/* Shortcut for declaring a Cplex Problem */
#tdefine DECL_PROB(env, name) \
Prob name = CPXcreateprob(env, &status, "");\
if (status){\
CPXgeterrorstring(NULL, status, errmsg);\
int trailer = std::strlen(errmsg) - 1;\
if (trailer >= @) errmsg[trailer] = '\0';\
throw std::runtime_error(std::string( FILE_ ) + ":" + STRINGIZE(__LINE_ ) + ":
+ errmsg);\

}
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/* Make a checked call to a Cplex API function */
#tdefine CHECKED CPX_CALL(func, env, ...) do {\
status = func(env, VA ARGS_ );\
if (status){\
CPXgeterrorstring(env, status, errmsg);\
int trailer = std::strlen(errmsg) - 1;\
if (trailer >= @) errmsg[trailer] = '\@';\
throw std::runtime_error(std::string(__FILE ) + ":" + STRINGIZE(__LINE_ ) + ":
+ errmsg);\
P
} while(false)

#endif /* CPX_MACRO_H */

As you can see, it allows you to call Cplex with specific functions you will see soon. In particular,
consider the CHECKED_CPX_CALL, which allows you to craft new constraints (ADD_ROWS) or add
variables (ADD_COLS). Consider the following calls as examples to be used in general (this is the first
exercise given by the professor, but is present so you can see how these functions work):

1. First CHECKED_CPX CALL - Creating x variables:

cpp
CHECKED_CPX_CALL (CPXnewcols, env, 1p, 1, &obj, &lb, &ub, &xtype, &xname);

2. Second CHECKED_CPX_CALL - Creating y variables:

S cpp
CHECKED_CPX_ CALL(CPXnewcols, env, lp, 1, &obj, &lb, &ub, &ytype, &yname);

3. CHECKED_CPX _CALL for Constraint (10) - Flow Conservation:
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S cpp
CHECKED_CPX CALL(CPXaddrows, env, lp, ©, 1, idx.size(), &rhs, &sense, &matbeg,
&idx[0], &coef[0], s bk

A problematic line is the following one:

#

This tells you that you have to include Cplex in order to make it work, it is the trickiest part.

Jump here or in case follow this video (both mine) to know more, particularly for Windows users.
- Linuxusers are only required to activate . cplex_env and you should be good to go

- Mac users might apply the following solution

CC = g++
CPPFLAGS = -g -w -Wall -02 -arch x86_64
LDFLAGS =

CPX_BASE = /Applications/CPLEX_Studio_Community2211
CPX_INCDIR = $(CPX_BASE)/cplex/include

CPX_LIBDIR = $(CPX_BASE)/cplex/lib/x86-64 osx/static_pic
CPX_LDFLAGS = -lcplex -lm —pthread -1dl

For any Mac user on ARM64, inside the makefile provided by the
professor update the path of the and
variables to match your installation (for example, mine is
). Then, add
to the variable. Now, the files should compile with
warnings, which you can hide by adding —w to the
variable. This worked for me on Visual Studio Code

To run the code examples in this guide, you will need:
e Cplex Optimization Studio installed with a valid license

e AC++compiler (e.g. GCC)
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o Cplexincluded library paths configured in your development environment. For detailed
instructions on setting up Cplex and configuring your environment, refer to the official Cplex
documentation.

Coming back to the actual lab, the model to be implemented here is the following:

Reporting the example to be implemented
Moving scaffolds between construction yards: MILP model
[Suggestion: compose transportation and fixed cost schemas]

min Z Cixj+ F Z vi+(L—F)z

iel jed fed jed

s.t. Zx,}- = R v jcJ
ic!
Z xj < D ¥ oiel
ied
xj = Ky v oieljeld
Z i = N+z
ieljed
yaz+yg: = 1 I
x; € Iy T oieljed
vi € {0,1} v oieljed
k|
z & {0,1}

The objective is to minimize total cost while satisfying all supply, demand, and truck availability
constraints. The linking constraints ensure that y[i][j] takes a value of 1 if there is any flow on the route
fromitoj.

A generic model is to be represented with sparse matrices since many elements can be evaluated to
be zero. We will be using three main vectors here_

- val =values of matrix in a compact way
- idx=index of column which value is in the same position for vector “val”
- beg=indexes for “val” vector where matrix rows begin

Consider normally you can have 100000 constraints and 2000000 variables, so many will be null; this
requires a sparse matrix data structure, where normally most of the entries may be zero.
m Sparse matrix: many zero entries
m Compact representation:
Explicit representation of “nonzeroes”
Linearization into indexes (idx) and values (val) vectors
A third vector to indicate where rows begins (beg) cpp]

int* beq |

int* idx | |
double* val |

| Resources: addrow.xls, first.cpp |
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Inside of the addrow.xls file, provided within the same folder between the examples, there is the
representation to be used by both the model and the solution of the actual model:

'mninﬂ\!rsim 7. of LibreCffice For the first time. Do pou want bo [esem whet's neas

F S e e - e T [ [ [ | a
x1+x2-5z<=0 \param | value description
X2+Qy1+9y2+8w = 2 eny (enwv)
|8yl >= -1 7] (Ip}
~Ay1+7z+5w <=9 colcrit |0 num of new variables
[ 4 num of new constraints (rows)
nzeot 11 num of nonzero coellicients
x1 %2 yl y2 z w rhs [0,2,-1,9] right hand sides
01 2 3 4|5 SENSE [L,E\'G L] (imequality sense: L (<=), E (=) or G (=)
rowl 01(1 0 O |-B[0]|==|0 rmatheg [0,3,7,8] position where the first element of each row is in rmafval
rowz 1l0|1 & 9 o0|8|= rmatind |[0,1,4, 1,2,3,5,2, 2,4,5] |column index for nonzeros
rowa 2000 8 0|0]|0]== rmatval |[1,1,-5,1,9.9,8,8,-4,7 5] |nonzero values
rowd 30 0 -4 b 0 7|5|==|0 colpame |(NULL) names of new variable (if any)
rowmame | (MULL) name of rows

For example, looking at row1 in the matrix:
x1l + x2 - 5z <=0
In sparse format:
rmatbeg[0] = 0 // Row 1 starts at position 0
rmatind = [0,1,4] // Column indices for x1,x2,z
rmatval = [1,1,-5] // Coefficient values
This representation:

e Saves memory by only storing nonzero elements

e Makes computation more efficient

¢ Dbeg array lets you quickly find where each row starts

e idxandwval arrays work in parallel to store location and value of nonzeros
Before moving on, let’s clarify:

- Variables are to be invoked with CPXnewcols with following syntax:

CPXnewcols (env, lp, ccnt, obj, 1lb, ub, xctype, colname);

e env: 'ambiente CPLEX;
e 1p: il problema:
e cent: il numero di variabili da aggiungere al problema;
e obj: i coefficienti delle variabili all'interno della funzione obiettivo:
e lb/ub: i lower bound e upper bound del dominio delle variabili;
e xctype: i tipi delle variabili:
— *c’: variabile continua (reale);
— 787 variabile binaria;
— *I’: variabile intera.

® colname: nomi delle variabili. Se viene passato nuLL, CPLEX assegnera dei nomi di default.

Written by Gabriel R.



242 MeMoCO Simple (for real)

As taken from the Italian notes, we say in summary:

- Environment

- Linear Problem

- Count of variables

- Objective value

- Lower Bound/Upper Bound
- Type of variables

- Name of variables

- Constraints are to be inserted with CPXaddrows

CPXaddrows (env, lp, colent, rowcnt, nzcnt, rhs, sense, rmatbeg, rmatind, rmatval ,
newcolname, newrowname) ;

® colent: numero di colonne (variabili) da ereare. Posso anche essere aggiunte delle variabili in
contemporanea al vincoli, ma & sconsigliato. Per evitare di aggiungere nuove variabili basta
passare ().

e rowcnt: numero di vincoli da aggiungere.
e nzent: numero di coefficienti della matrice sparsa che sono diversi da (0.

e rhs: parametro b del modello, ovvero il vettore con 1 valori presenti nella parte destra dei
vineoli.

e sense: senso dei vincoli: *6* (=), '’ (=), 'L’ (<).

® rmatbeg: vettore con gli inizi delle righe della matrice sparsa (beg).
® rmatind: vettore con gli indiei di riga della matrice sparsa (idz).

e rmatval: vettore con i valori della matrice sparsa.

® newcolname/newrowname: nomi per le colonne,/righe.

As taken from the Italian notes, we say in summary:

- Environment
- Linear Problem
- Number of columns (variables) to create
- Number of rows (constraints) to add
- Number of coefficients not zero (nz)
- Right hand side (so, after the sense sign)
- Sense(<, =, >)
o Constraint greater than X
= c1>x(sense=G,rhs=x)
- Lower Bound/Upper Bound
- Starting values of the rows (beg)
- Starting rows for the index rows (idx)
- Names of columns/rows
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The code to be examined is the following (commented below), which is the less efficient way, made to
benchmark and to call the Cplex model once so to make it work:

#include <cstdio>
#include <iostream>
#include <vector>
#include <string>
#include "cpxmacro.h"

using std;

status;
errmsg[BUF_SIZE];

main ( argc,

try
{

DECL_ENV( env );
DECL_PROB( env, 1lp );

cent = 6;
objCost[6] = { 2.0, 3.0, 0.0, 0.0, 0.0, 1.0 };
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1b[6] ={ 0.0 , 0.0 , -CPX_INFBOUND,
CPX_INFBOUND, 0.0, 0.0 %

ub[6] = { CPX_INFBOUND, CPX_INFBOUND, ©.0 , CPX_INFBOUND
, 1.0, CPX_INFBOUND };

xtype[6] > TN}
** xname =

CHECKED_CPX_CALL( CPXnewcols, env, lp, ccnt, &objCost[@], &lb[@], &ub[@],
&xtype[0], xname );

colcount
rowcount
nzcnt = 11;

rhs[4] =

sense[4]

rmatval[11] = { 1.0, 1.0, -5.8, 1.0, 9.9, 9.0,
4.0, 7.0, 5.0 };

rmatbeg[4] = {90,3,7,8};

rmatind[11] = {0,1,4, 1,2,3,5, 2, 2,4,5};

** newcolnames =
** pownames =

CHECKED_CPX CALL( CPXaddrows, env, lp, colcount, rowcount, nzcnt, &rhs[0],
&sense[0], &rmatbeg[@], &rmatind[0©], &rmatval[@], newcolnames , rownames );

CHECKED_CPX_CALL( CPXchgobjsen, env, lp, CPX _MAX );

CHECKED_CPX_CALL( CPXwriteprob, env, lp, "first.lp",
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CHECKED_CPX_ CALL( CPXmipopt, env, 1lp );

objval;
CHECKED_CPX_CALL( CPXgetobjval, env, lp, &objval );
std::cout << "Objval: " << objval << std::endl;
= CPXgetnumcols(env, 1lp);

std: :vector< > varVals;
varVals.resize(n);

fromIdx = 0;

toldx = n - 1;

CHECKED_CPX CALL( CPXgetx, env, lp, &varVals[0@], fromIdx, toIdx );

for ( i=0;1i<n; ++i) {
std::cout << "var in position "

<< 1 <« << varVals[i] << std

value of zed var;
CHECKED_CPX_CALL( CPXgetx, env, lp, &value_of zed var, 4, 4 );

CHECKED_CPX_CALL( CPXsolwrite, env, lp, "first.sol" );

CPXfreeprob(env, &lp);
CPXcloseCPLEX(&env);

}

catch(std: :exception& e)

{

std::cout << ">>>EXCEPTION: " << e.what() << std::endl;

}

return 0;
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Creating variables and constraints requires one step at a time, so we use something like the following,
in which variables are called “columns”:

CPXnewcols (env, 1lp, ccnt, obj, 1lb, ub, xctype, colname)

// — ccnt: number of variables

// — obj: objective coefficients (Cij, F, L-F)

// - 1lb: lower bounds (0 for all)

// - ub: upper bounds (capacity K for xij, 1 for yij and z)

// - xctype: variable types ('C' for continuous xij, 'B' for binary yij
and z)

In Cplex a single list of variables will be created each time, where each variable will be in the relative
correct position.

Double vectors or maps are basically the same thing of using lists or dictionaries, then we map
iteratively each variable in a straightforward way.

Now, one by one, we implement the constraints and the parts of the model - First, let's handle they
variables and map (similar to how x was handled):

/*MAP FOR y VARS: initial memory allocation for map vector*/
map y.resize (I);
for (int 1 =0 ; 1 < I ; ++1i ) {

map y[i].resize(J);

for (int 3 =0 ; 3 < J ; ++3 ) {

map_y[1i][J] = -1;

// add y vars [in o.f.: ... + F sum{ij} y 1iJ + ... ]
for (int i = 0; 1 < I; i++) {
for (int j = 0; j < J; j++) {

if ( C[i][J] > od cost max ) continue; // EXT1

char xtype = 'B'; // Binary variable

double 1b

Il
o
o

double ub = 1.0;

snprintf (name, NAME SIZE, "y %c %c", nameI[i], nameJ[]]);
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char* xname = (char*) (&name[0]);

CHECKED CPX CALL( CPXnewcols, env, lp, 1, &F, &lb, &ub, &xtype,
&xXname ) ;

map y[i][j] = current var position++;

}

Let’s go on completing the code, the objective function - min }; C_ij x_ij + F Y y_ij + (L-F)z:

// add z var [in o.f.: ... + (L-F) z ]

char xtype = 'B'; // Binary variable

double 1b = 0.0;

double ub = 1.0;

double obj = L-F; // Coefficient in objective function

snprintf (name, NAME SIZE, "z");
char* xname = (char*) (&name[0]);

CHECKED CPX CALL( CPXnewcols, env, lp, 1, &obj, &lb, &ub, &xtype, &xname
) ;

map z = current var position++;

Now the constraints match the mathematical model:

// add capacity constraints (origin) [ forall i, sum{j: x ij exists} x ij
<=D 3 ]

for (int 1 = 0; 1 < I; i++) {
std::vector<int> idx;

std: :vector<double> coef;

char sense = 'L';

for (int j = 0; j < J; j++) {

if ( map x[1][J] < O ) continue;

idx.push back(map x[i][]]);
coef.push back(1.0);

}

int matbeg = 0;
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CHECKED CPX CALL( CPXaddrows, env, lp, 0, 1, idx.size(), &D[i],
&sense, é&matbeg, &idx[0], &coef[0], NULL, NULL );

}

// add linking constraints (x ij - K y ij <= 0)
for (int i = 0; 1 < I; i++) {
for (int j = 0; j < J; j++) {

if ( map x[1i][J] < O ) continue;

std::vector<int> idx;
std: :vector<double> coef;

double rhs

Il
o
o
~.

char sense

Il
=

idx.push back(map x[i][]]);
coef.push back(1.0);
idx.push back(map y([1i]1[3]);

coef.push back(-K);

int matbeg = 0;

CHECKED CPX CALL( CPXaddrows, env, lp, 0, 1, idx.size(), é&rhs,
&sense, é&matbeg, &idx[0], &coef[0], NULL, NULL );

}

// add counting constraint (sum ij y ij - z <= N)
{

std::vector<int> idx;

std::vector<double> coef;

char sense = 'L';

for (int i = 0; i < I; i++) {
for (int 7 = 0; 3 < J; j++) {
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if (( map yl[i][J] < O || C[i][J] > od cost low ) continue;

idx.push back(map y[i][]]);

coef.push back(1.0);

}
idx.push back(map z);

coef.push back(-1.0);

int matbeg = 0;

CHECKED CPX CALL( CPXaddrows, env, lp, 0, 1, idx.size(), &N, &sense,
&matbeg, &idx[0], &coef[0], NULL, NULL );

}

// add condition constraint (y A2 + y B2 <= 1)
{

std::vector<int> idx;

std::vector<double> coef;

double rhs

Il
-
o
~.

Il
=

char sense

idx.push back(map y[0][1]); // A2
coef.push back(1.0);
idx.push back(map y[1][1]); // B2

coef.push back(1.0);

int matbeg = 0;

CHECKED CPX CALL( CPXaddrows, env, lp, 0, 1, idx.size(), é&rhs,
&sense, é&matbeg, &idx[0], &coef[0], NULL, NULL );

}

Finally, getting the solution values:

// print values of decision variables

Written by Gabriel R.



250 MeMoCO Simple (for real)

std::vector<double> varVals;
varVals.resize (current var position);

CHECKED CPX CALL( CPXgetx, env, lp, &varVals[0], 0, current var position-
1)

// Print x variables
for (int i = 0; 1 < I; i++) {
for (int j = 0; j < J; j++) {
if (map_x[1][j] >= 0) {
std::cout << "x " << nameI[i] << " " << nameJ[j] << " ="

<< varVals[map x[1][J]] << std::endl;

// Print y variables
for (int i = 0; 1 < I; i++) {
for (int j = 0; j < J; j++) {
if (map y[i]([J] >= 0) {
std::cout << "y " << nameI[i] << " " << nameJ[j] << " ="

<< varVals[map y[i][J]] << std::endl;

// Print z variable

std::cout << "z = " << varVals[map z] << std::endl;
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18 LABORATORY 6 — CPLEX APIs — CONCLUDING SCAFFOLDS
MODELING

Continuing what we have established up to now, we want to add constraints to the previous model
formulation.

- Request/Demand Constraints: For each destination j, the total amount transported from all
origins must be at least the required demand R[j]. Mathematically: Vj € J : Yi_,N xj = R;

- Capacity/Supply Constraints: For each origin i, the total amount transported to all destinations
cannot exceed the available supply D[i]. Mathematically: Vi € | : 3j_,M xjj < Di

- Linking Constraints: If any amount is transported from origin i to destination j (i.e., if xjj > 0),
then the corresponding yij variable must be 1. This is enforced using a BigM constraint.
Mathematically: Vi€ l,j € J: xj- M-yjj< 0

Here's how we implement these in our code using the CPLEX API's CPXaddrows function, in order to
use all of the sets present, adding 1 constraint to the model for all parts of the vector following the
model starting from 0 in the sparse matrix.

The point of using the vectors is to have all of the indices of coefficients of the corresponding
variables, pushing back one after the other all of the variables involved:

// add request constraints (destinations)
for (int j = 0; j < J; j++) {
std::vector<int> idx;
std: :vector<double> coef;

char sense = 'G';

for (int i = 0; 1 < I; i++) {
if ( map x[1][J] < O ) continue;
idx.push back(map x[i][]]);
coef.push back(1.0);

}

int matbeg = 0;

CHECKED CPX CALL( CPXaddrows, env, 1lp, 0, 1, idx.size(), &R[J], &sense,
&matbeg, &idx[0], &coef[0], NULL, NULL);

}

// add capacity constraints (origin)

for (int i = 0; 1 < I; i++) {
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std::vector<int> idx;

std: :vector<double> coef;

char sense 'L,

for (int jJ 0; J < J; J++) |
if (map x[i][3j] < 0) continue;
idx.push back(map x[i][]]);
coef.push back(1.0);

}

int matbeg = 0;

CHECKED CPX CALL (CPXaddrows, env, lp, 0, 1, idx.size(), &D[1i], &sense,
&matbeg, &idx[0], &coef[0], NULL, NULL);

}

// add linking constraints
for (int 1 = 0; 1 < I; i++) {
for (int 7 = 0; J < J; Jj++) {
if (map x[1][J] < O || map y[i][J] < 0) continue;
std::vector<int> 1idx(2);

std: :vector<double> coef (2);

char sense = 'L';
idx[0] = map x[1]1[3];
idx[1] = map y[i][J];
coef[0] = 1.0;
coef[l] = -K;

double rhs = 0;

int matbeg 0;

CHECKED CPX CALL (CPXaddrows, env, 1lp, 0, 1, idx.size(), &rhs, &sense,
&matbeg, &idx[0], &coef[0], NULL, NULL);

}
}
The logic is similar to what we did for the other constraints:

- We loop through the relevant dimensions (origins i and destinations j)
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- We build up idx and coef vectors with the variable indices and coefficients for the non-zero
terms

- We specify the right-hand side value (R[j], D[i] or 0), sense ('G' for 2, 'L' for <) and matrix start
index matbeg

- We invoke CPXaddrows to add the fully constructed constraint to CPLEX

The only new aspect is handling the BigM constraint, where we need two terms in the expression Xxij -
M-yi;.. We account for this by having idx and coef vectors of size 2 and setting their elements
accordingly.

With this, our model implementation is complete! We can now invoke the solver, retrieve the solution,
and interpret the results.

The code for solving the model remains the same as before:
// Optimize the model
CHECKED CPX CALL( CPXmipopt, env, 1lp );
// Get the solution status
int solstat = CPXgetstat (env, 1lp);
if (solstat == CPXMIP OPTIMAL) {
std::cout << "Optimal solution found!\n";
} else {
std::cout << "No optimal solution found.\n";
// Handle other statuses
}

CPXmipopt invokes the CPLEX solver on our mixed integer programming model. CPXgetstat retrieves
the solution status, which we check to determine if an optimal solution was found.

Assuming a solution exists, we can query CPLEX for the variable values:
// Get the objective value

double objval;

CHECKED CPX CALL( CPXgetobjval, env, lp, &objval );

std::cout << "Objective value: " << objval << std::endl;

// Get the variable values

std::vector<double> xval (I*J);

CHECKED CPX CALL( CPXgetx, env, lp, é&xval[0], 0, I*J-1 );
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for (int 1 = 0; i < I; i++) {
for (int J = 0; j < J; j++) {
if ((map x[1][3] >= 0 ) {
std::cout << "x " << nameI[i] << " " << nameJ[]J] << " ="

<< xval[map x[i][]J]] << std::endl;

}

// Similarly get y and z values
CPXgetobjval retrieves the value of the objective function at the optimal solution.

CPXgetx retrieves the values of the decision variables. Since CPLEX stores all variables in a single
indexed array, we use our map_x to go from the logical 2D representation (origins i and destinations j)
to the actual indices of the x variables. We then print out the non-zero x values.

The same approach can be used for the y and z variables. With this, we have completed the end-to-
end process of implementing, solving and interpreting the results of an optimization model using the
CPLEX APls.
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19 LABORATORY 7 — NEIGHBORHOOD SEARCH FOR THE SYMMETRIC
TSP (TABU SEARCH)

Note: for people using Windows: make is not natively installed - follow this one.

The goal is to implement a local search for the TSP (folder of the same name) with the following files
(this comes from 0.skeleton) — differently from Cplex APIs lessons, here VS Code is enough:

main.cpp
main.exe
main.o
Makefile
TSP.h
tsp12.1.dat
tsp12.2.dat

tsp12.3.dat
tsp60.dat
TSPSolution.h

TSPSolver.cpp
TSPSolver.h
TSPSolver.o

We are trying to compile one file of the dat present like this:

PS C:\Users\roves\OneDrive\Documenti\GitHub\Computer-Science-
UniPD\Courses\Other elective\MeMoCO\Labs\Lab
7\103.heur.ls.tsp\0.skeleton> make

g++ -g -Wall -02 -c TSPSolver.cpp -o TSPSolver.o

TSPSolver.cpp: In member function 'bool TSPSolver::solve(const TSP&,
const TSPSolutioné&, TSPSolution&) ':

TSPSolver.cpp:15:10: warning: unused variable 'iter' [-Wunused-variable]
15 | int iter = 0;

| Nan~

gt+ -g -Wall -02 -c main.cpp -0 main.o

g+t+ -g -Wall -02 TSPSolver.o main.o -o main

PS C:\Users\roves\OneDrive\Documenti\GitHub\Computer-Science-
UniPD\Courses\Other elective\MeMoCO\Labs\Lab
7\103.heur.ls.tsp\0.skeleton> ./main tspl2.1l.dat

number of nodes n = 12
### 0 8 2 7 10 4 91 6 5 11 3 0 ##+#
FROM solution: 0 8 2 7 10 4 91 6 5 11 3 0 (value : 135.7)

TO solution: 0 8 2 7 10 4 91 6 5 11 3 0 (value : 135.7)

Written by Gabriel R.


https://stackoverflow.com/questions/2532234/how-to-run-a-makefile-in-windows

256 MeMoCO Simple (for real)

in 0.000942945 seconds (user time)
in 0.001 seconds (CPU time)

To avoid problems/long logs for people in labs/using Linux, comment line 14 inside of TSPSolution.h:

Let’s read for example the file:

#ifndef
#tdefine

#include <vector>
#include "TSP.h"

#tdefine

TSPSolution

std: :vector< > sequence;

tsp

TSPSolution( TSP& tsp ) {
sequence.reserve(tsp.n + 1);
for ( i=0; 1< tsp.n; ++1 ) {
sequence.push_back(i);

}

sequence.push_back(®0);

}
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TSPSolution( TSPSolution& tspSol ) {
sequence.reserve(tspSol.sequence.size());
for ( i =0; i < tspSol.sequence.size(); ++i ) {
sequence.push_back(tspSol.sequence[i]);
}
}

print ( ) {
for ( i =0; i < sequence.size(); i++ ) {

std::cout << sequence[i] << 5

}
}

right

TSPSolution& operator=( TSPSolution& right) {

if( == &right) return * 5
for ( i =0; i < sequence.size(); i++ ) {

sequence[i] = right.sequence[i];

}

return *

This is the header file that defines the TSPSolution class and related structures. It contains:

- The sequence of the cities as a vector
- N+1 cities to have an Hamiltonian cycle

We’ll also be commenting TPSSolver.h:

#ifndef
#define

#include <vector>
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#include "TSPSolution.h"

move {
substring begin;
substring end;
} TSPMove;

TSPSolver

TSPSolver ( ) { }

evaluate ( TSPSolution& sol , TSP& tsp )
total = 0.0;
for ( i=0; i< sol.sequence.size() - 1 ; ++i ) {
from = sol.sequence[i] ;
to = sol.sequence[i+l];
total += tsp.cost[from][to];
}

return total;

}

initRnd ( TSPSolution& sol ) {
srand(time( ));
for ( i =1 ; i< sol.sequence.size() ; ++i ) {

idx1 = rand() % (sol.sequence.size()-2) + 1;
idx2 = rand() % (sol.sequence.size()-2) + 1;
tmp = sol.sequence[idx1];
sol.sequence[idx1l] = sol.sequence[idx2];
sol.sequence[idx2] = tmp;
}
std::cout << "### "; sol.print(); std::cout << " ###" << std::endl;
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TSP
initSol
bestSol

solve ( TSP& tsp , TSPSolution& initSol , TSPSolution& bestSol

The move is represented by a substring reversal, where given a sequence you take a solution reversing
a substring (taking X arcs and removing them so to understand the actual starting/ending position).

There is then the solution evaluation, starting from the o.f., starting from 0 and finishing into the
second-last position, adding cost from each city. The solution is initialized starting from random
swaps, so to create an instance of the TSP.

Then, we are commeting TSPSolver.cpp:

#include "TSPSolver.h"
#include <iostream>

TSPSolver::solve ( TSP& tsp , TSPSolution& initSol , TSPSolution
bestSol )

{
try

{
stop
iter 0;

TSPSolution currSol(initSol);

while ( ! stop ) {
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stop =

}

bestSol = currSol;

}
catch(std: :exception& e)

{

std::cout << ">>>EXCEPTION: " << e.what() << std::endl;

return K

}

return

This is the implementation file containing the actual neighborhood search algorithm. Currently, the

solve () method has a placeholder implementation that needs to be replaced with a complete local
search iteration that:

1. Searches for improving neighbor solutions using 2-opt moves
2. Updates the current solution when a better neighbor is found
3. Stops when no improving neighbor exists

The main functionality that needs to be implemented here is the neighborhood exploration and
solution improvement logic. The logic is not so simple, according to the professor; consider we have
to swap each nodes by “k”, as you can see by the image here;

<1,23.4.56,7.81> <1.2.6,5,4,3.7.58 1>

<1,2.34,56,7,8,1> <1,2.7,6,9,4,5 8.1>

We would need some function to transform the current solution to a neighbor solution (take a better
solution with the local search); one way to start is to write a small function into the solver, for example
inside the protected part (present in the TSPSolver header file).
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| propose the following implementation:

TSPSolver:

make20ptMove (TSPSolution& sol, TSPMove& move)

make30ptMove (TSPSolution& sol, TSPMove& movel, TSPMove& move2)

evaluate20ptMove ( TSPSolution& sol, TSPMove
move) ;

evaluate30ptMove ( TSPSolution& sol, TSP& tsp,
TSPMove& movel, TSPMove& move2)

TSPSolver.cpp

TSPSolver: :make20ptMove (TSPSolution& sol, TSPMove& move)

move.substring begin;
move.substring end;
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while(i < j) {
std: :swap(sol.sequence[i], sol.sequence[j]);
i++; J--5

}

return true;

bool TSPSolver::make30OptMove(TSPSolution& sol, const TSPMove& movel, const TSPMove&
move2) const {

make20ptMove(sol, movel);
make20ptMove(sol, move2);
return true;

double TSPSolver::evaluate20ptMove(const TSPSolution& sol, const TSP& tsp, const
TSPMove& move) const {

int i = move.substring begin;

int j = move.substring end;

double removed cost = tsp.cost[sol.sequence[i-1]][sol.sequence[i]] +
tsp.cost[sol.sequence[j]][sol.sequence[j+1]];
double added_cost = tsp.cost[sol.sequence[i-1]][sol.sequence[]]] +
tsp.cost[sol.sequence[i]][sol.sequence[]j+1]];

return added cost - removed cost;

double TSPSolver::evaluate30ptMove(const TSPSolution& sol, const TSP& tsp,
const TSPMove& movel, const TSPMove& move2) const

TSPSolution temp_sol = sol;
make20ptMove (temp_sol, movel);
double improvement = evaluate20ptMove(temp_sol, tsp, move2);
return improvement;
}

bool TSPSolver::solve(const TSP& tsp, const TSPSolution& initSol, TSPSolution&
bestSol) {

try {
TSPSolution currSol(initSol);

double currCost = evaluate(currSol, tsp);
bool improved = true;
while(improved) {

improved = false;

for(uint i = 1; i < currSol.sequence.size()-2 && !improved; i++) {
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for( j = i+l; j < currSol.sequence.size()-1; j++) {
TSPMove move = {( )i, ( )i}s
improvement = evaluate20ptMove(currSol, tsp, move);

if(improvement < 0) {
make20ptMove(currSol, move);
currCost += improvement;
improved = 5
break;

if(!improved) {
for( i =1; i < currSol.sequence.size()-4 && !improved; i++) {
for( j = i+2; j < currSol.sequence.size()-2; j++) {
TSPMove movel = {( )i, ( )il};

for( k = j+1; k < currSol.sequence.size()-1; k++) {
TSPMove move2 = {( )j+1, ( )k};
improvement = evaluate30ptMove(currSol, tsp,
movel, move2);

if(improvement < 0) {
make30ptMove (currSol, movel, move2);
currCost += improvement;
improved = ;
break;

}

if(improved) break;

bestSol = currSol;
return i

}

catch(std: :exception& e) {
std::cout << ">>>EXCEPTION: " << e.what() << std
return i
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This implementation:

1.

2.

6.

Uses afirst-improvement strategy but explores both 2-opt and 3-opt neighborhoods

Tries 2-opt moves first since they're simpler, then moves to 3-opt if no improvement is found
Evaluates moves efficiently by only calculating the cost difference of affected edges
Maintains the fixed start/end node (0) by not including it in moves

Uses helper methods to keep the code organized and maintainable

Includes proper exception handling

The solver follows a hierarchical neighborhood structure - it first tries simpler moves (2-opt) before

attempting more complex ones (3-opt), which is generally more efficient than always exploring the full
3-opt neighborhood.

Remember what we are doing:

In the context of the Traveling Salesman Problem (TSP), 2-opt and 3-opt moves are
fundamental techniques for improving an existing solution through local search.

The 2-opt move involves selecting two nonadjacent arcs of the current path and swapping
them with two new arcs in order to obtain a new valid path. Operationally, this results in
reversing a sub-sequence of the path. For example, if we have the path <1,2,3,4,5,6,7,8,1> and
select the arcs (2,3) and (6,7), after the 2-opt move we will get the path <1,2,6,5,4,3,7,8,1>.
This operation is equivalent to “uncrossing” two intersecting arcs in the path design.

The 3-opt move is a generalization of 2-opt involving three arcs instead of two. In this case,
three nonadjacent arcs are selected, and the path is reorganized by considering all possible
ways of reconnecting the resulting segments. In practice, this is equivalent to performing two
sub-sequence reversals. Going back to the previous example, a 3-opt move could transform
the path <1,2,3,4,5,6,7,8,1>into <1,2,7,6,3,4,5,8,1>, reversing two distinct segments of the
path.

The combined use of these moves allows the exploration of a wider neighborhood than the
current solution. The 2-opt is simpler and faster to implement, while the 3-opt can find
improvements that the 2-opt cannot identify, but it requires more computational time since it
explores a larger number of possible changes. In practice, we often start by looking for
improvements with 2-opt moves and, only if none are found, move on to the more complex 3-
opt moves.

Itis important to note that both moves maintain path validity: the result is always a
Hamiltonian cycle that visits all nodes exactly once, changing only the order in which they are
visited.
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Let’s see the professor solution instead - first define the 2-opt-move:

TSPSolution& TSPSolver::apply20ptMove(TSPSolution& tspSol, TSPMove& move)
{

for( i = move.substring begin, i = move.substring end; i++) {
tspSol.sequence[i] = tspSol.sequence[move.substring end - (i -

move.substring begin)];

}

return tspSol;

Then, inside the solve () method, we would have to apply this move for every possible move,
generating all of the possible pairs for the substrings combinations:

TSPSolution currSol(initSol);
while ( ! stop ) {

/// TODO: replace the following by the local search iteration
// that updates currSol if an improving neighbor exists and
// stops otherwise

TSPMove move; I
for every possible move {
apply2optMove(currSol,move);

}

We would need to apply for the move for every possible pair of city so to update the cost accordingly
and then reverse the actual string:

).skeleton > €+ TSPSolver.cpp
TSPMove move;
TSPSolution neighSol(tsp);
TSPSolution neighBest(currSol);
for ( int i_subs_init = 1 ; i_subs_init <= currSol.sequence.size()-2; ++i_subs_ini
for ( int i_subs_end = i_subs_init+l ; i_subs_end <= currSol.sequence.size()-1;
move.substring begin = i subs init;
move.substring end = i subs end;
neighSol = apply2optMove(currSol,move);
double neighCost = neighSol.evaluate();
double neighImprov = neighCost - neighBest.evaluate();
if ( neighImprov > le6 ) {
neighBest = neighSol;
}

1

}

if ( neighBest.evaluate() - currSol.evaluate() < -1le-6 ) {
currSol = neighBest;
} else { g
stop = true;
}
}
besftSol = currSol;
}

catch(std::exception& e)
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The professor told us this is a very “bad” implementation, to be found inside of the Internet with: “how
caniimplement local search for tsp”. Consider in case sources like this one to understand more.

TSPSolver::solve ( TSPSolution& initSol , TSPSolution
bestSol )

{
try

{
stop

iter 0;

TSPSolution currSol(initSol);

while ( ! stop ) {
if ( tsp.n < 20 ) currSol.print(); std::cout << '\n’;

TSPMove move;

TSPSolution neighSol(tsp);

TSPSolution neighBest(currSol);

for ( i subs_init = 1 ; i_subs_init < currSol.sequence.size()-2;

++i_subs _init ) {
for ( i subs end = i subs init+l1 ; i subs_end <
currSol.sequence.size()-1; ++i subs end ) {
move.substring begin = i_subs_init;
move.substring end = i1 _subs _end;
neighSol = apply2optMove(currSol,move);

neighCost = ->evaluate(neighSol,tsp);
bestCost = ->evaluate(neighBest,tsp);
neighImprov = neighCost - bestCost;

if ( neighImprov < -1le-6 ) {

neighBest = neighSol;
}
}
}

currCost = ->evaluate(currSol,tsp);
bestCost = ->evaluate(neighBest,tsp);
if ( bestCost - currCost < -le-6 ) {
currSol = neighBest;
} else {
stop =
}
}

bestSol = currSol;
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catch(std: :exception& e)

{
std::cout << ">>>EXCEPTION: " << e.what() << std::endl;

return false;

}

return true;

}

Specifically:

1. Inthe solve method, the code iterates over all possible 2-opt moves by considering all pairs of
substring start and end positions.

2. Foreach move, it creates a new neighSol solution by applying the 2-opt move to the current
solution using the apply2optMove method.

3. It evaluates the cost of the neighbor solution using the evaluate method.

4. It compares the cost of the neighbor solution with the best neighbor solution found so far and
updates neighBest if the current neighbor is better.

5. After considering all possible moves, it updates currSol with neighBest if an improvement is
found, otherwise, it stops the search.

The inefficiency in this implementation lies in the fact that it applies the 2-opt move and evaluates the
entire solution for each possible move. This involves unnecessary computations and memory
allocations.

Inside the “1-essential” folder, there is a more efficient implementation, with code as follows:

1. Inthe solve method, it calls the findBestNeighborDecrement method to find the best 2-
opt move and its corresponding cost decrement.

2. The findBestNeighborDecrement method iterates over all possible 2-opt moves, but
instead of applying the move and evaluating the entire solution, it calculates the cost variation
directly.

o ltretrieves the cities before and after the substring (h, i, j, l) based on the current
solution's sequence.

o It calculates the cost variation by subtracting the costs of the removed edges (h-i and j-
) and adding the costs of the new edges (h-j and i-l).

o ltupdates bestDecrement and the corresponding move if a better cost decrement is
found.

3. If amove with a negative cost decrement is found, it applies the move using apply2optMove
and continues the search. Otherwise, it stops the search.
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The efficiency in the second implementation comes from the following:

1. Itavoids creating new solution objects and evaluating the entire solution for each move.
Instead, it calculates the cost variation solely based on the cities involved in the move.

2. ltusesthe findBestNeighborDecrement method to find the best move and its cost decrement
in a single pass, reducing redundant computations.

3. Itapplies the move only when an improvement is found, avoiding unnecessary solution
modifications — just when needed.

Inside the header file:

findBestNeighborDecrement ( TSP& tsp , TSPSolution& currSol ,
TSPMove& move );

Inside the cpp file:

TSPSolver::solve ( TSP& tsp , TSPSolution& initSol , TSPSolution
bestSol )
{
try
{
stop
iter = 0;

TSPSolution currSol(initSol);

TSPMove move;
while ( ! stop ) {
if ( tsp.n < 20 ) currSol.print();

bestDecrement = findBestNeighborDecrement (tsp,currSol,move);
std::cout << "(" << ++iter << "ls) move " << move.substring init <<

<< move.substring_end << " improves by " << bestDecrement << std::endl;
if ( bestDecrement < -1le-6 ) {

currSol = apply2optMove(currSol,move);

stop = g
} else {

stop =

}
}

bestSol = currSol;

}
catch(std: :exception& e)

{

std::cout << ">>>EXCEPTION: " << e.what() << std::endl;
return K

}

return
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This is based on this move present inside the slide (focused formula) - compute the best decrement

without needing the cost, only the cost variation:

LS for TSP: k-opt neighbourhoods

@ In terms of path representation, 2-opt is a substring reversal

Example: < 1,2,3,4,5,6,7,8,1 > — < 1,2,6,5,4,3,7,8,1 >
, —1)(n—2

2-opt size: in=Eiase) )2(" ) — O(n?)

k-opt size: O(n*)

Neighbour evaluation: incremental for the symmetric case, O(1)

2-opt move evaluation (symmetric case): reversing sequence between
i and j in the sequence < 1...h,i,...,j,/,..., 1>

Crew = Cotd — Gl —liGi rHliGHi THiiG

@ which k7 k =2 good, k = 3 fair improvement, k = 4 little
improvement

An output example might be the following:

### 0 11 1 95 6 10 8 3 7 2 4 0 #+#4#

0

0

FROM

TO

in

in

11

1

1

1

195610837240

11 956108 37240

11 956108 7 3240

11 92 37 8 10 6 540

11 9108 73 26540

11 910 87 345620

11 9108 76 54320

11 10 98 76 54320

solution: 0 11 1 9 5 6 10 8 3 7 2 4 0 (value : 1206)
solution: 0 1 11 10 9 8 7 6 54 3 2 0 (value : 72)
.0159369 seconds (user time)

.017 seconds (CPU time)
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20 LABORATORY 8 — COLUMN-GENERATION BASED HEURISTIC FOR
1D-CUTTING STOCK PROBLEM

Downloading from the Moodle the same name folder (TODO version ofc), we have two environments,
in order to create the master and the slave problem. We start from the main file here.

The code sets up a master Linear Programming (LP) problem and iteratively generates new columns
(cutting patterns) through the following key components:

- The main data structures and initialization:
DECL_ENV( env ); // CPLEX environment
DECL PROB( env, lp ); // CPLEX problem
CS1D csldSolver (env, 1lp); // Custom solver class
Data data; // Problem data
data.read(argv([1l]); // Read input
cs1dSolver.initMaster(data); // Initialize master problem
- The core column generation loop:
while (newcol) {
// Key components here:
// 1. Solve master LP to get dual values
// 2. Solve pricing subproblem to find new columns

// 3. Add new column if found or terminate if none found

The master problem and pricing subproblem work together in this way:

1. The master problem starts with a subset of cutting patterns and solves the LP relaxation
(continuous) to get:

e Primal solution (x): How many times to use each pattern
e Dual solution (u): Shadow prices for the demand constraints, information to get the new
column

2. The pricing subproblem uses these dual values to:

e Search for a new cutting pattern with negative reduced cost
e Add this pattern as a new column to the master if found
e Return false if no negative reduced cost pattern exists
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Once the column generation loop terminates, we have solved the LP relaxation optimally. The code
then uses two different methods to find integer solutions:

1. Simple rounding:

// Round up each variable value

for (unsigned int 1 = 0; 1 < x.size(); it+) {
x[1] = (x[1] > le-5) ? ceil(x[1i]) : 0.0;

}

2. Branch-and-bound on generated columns:

csldSolver.branchAndBoundOnThePartialModel (x, INTobjval?);

This applies integer programming techniques on the restricted set of columns found during column
generation.

The key insight is that column generation allows us to solve large problems by dynamically generating
only the "good" cutting patterns as needed, rather than enumerating all possible patterns upfront. The
pricing subproblem efficiently finds these good patterns by solving a knapsack problem using the dual
values from the master problem.

This implements what's known as a "price-and-cut" approach:

o Price: Generate new columns through the pricing subproblem
e Cut: Solve the master LP with the current columns
e Repeat until no negative reduced cost columns remain

The integer solutions found at the end are heuristic since we may have missed some patterns that
could be useful in the integer optimal solution but weren't needed for the LP relaxation.

First of all, we solve the master and then call the slave:

while(newcol){
//T0DO. ..
// - solve master obtaining dual information
csldSolver.solveMasterLP(x, u, objval);

std::cout << "xxx IT " << it++ << " %*% " << " |Pobj: " << objval << " x: ";
if (x.size() < 10) for (unsigned int j = 0; j < x.size(); j++)
std::cout << setw(7) << x[j] << " ",
std::cout << std::endl;
// - call the slave [price] with dual information (the slave

also adds a variable to the master, if any, otherwise it returns false)
csldSolver.price(env2, data, u);
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This is a sophisticated example of decomposition - breaking down a complex problem into more
manageable master and subproblems that work together through the dual values to find an optimal
solution.

Inside of cs1d file, we will complete the method to solve the master LP (which is restricted) as follows:

void CS1D::solveMasterLP(std::vector<double>& x, std::vector<double>& u, double&
objval)
{
//T0ODO
// solve using CPX*lp*opt
CHECKED_CPX_CALL(CPXlpopt, env, 1p);
// get current LP obj value (reference objval)
CHECKED_CPX_CALL(CPXgetobjval, env, lp, &objval);
// get current RESTRICTED LP PRIMAL solution (reference x)
int n = CPXgetnumcols(env, 1p);
x.resize(n);
CHECKED_CPX_CALL(CPXgetx, env, lp, &x[0], 0, n - 1);
// get current RESTRICTED LP DUAL solution using *CPXgetpi* (reference u)
int m = CPXgetnumrows(env, 1p);
u.resize(m);
CHECKED_CPX_CALL(CPXgetpi, env, 1lp, &u[0], 0, m - 1);

}

Above, we:

- solves the restricted master problem, which contains only the columns (cutting patterns)
generated so far

- retrieves the objective value of the current solution - in the cutting stock context, this
represents the total number of stock pieces needed with the current set of patterns.

- retrieves the primal solution - how many times each cutting pattern should be used. The vector
is resized to match the current number of patterns,

- retrieves the dual values (or shadow prices) associated with the demand constraints.

Now we go into the detail of the pricing procedure; find the minimum possible reduced cost
(maximum violation in dual terms) —a column s.t. we find the master problem:

Question: Given a basic optimal solution for the problem in which only some
variables are included, how can we find (if any exists) a variable with negative
reduced cost (i.e., a constraint violated by the current dual solution)?

Solve an optimization problem:
mn €=1—ulz
s.t. Zz Is a possible column of the constraint matrix

The knapsack problem is solved efficiently with dynamic programming; we will use the exec function
from the knapsack.h file present in the same folder.
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This function determines if there are any beneficial new cutting patterns to add to the master problem.
The pricing problem needs to solve a knapsack problem where:

- The "weights" are the item lengths

- The"capacity" is the stock length

- The "values" are the dual values from the master problem

- The solution indicates how many of each item to include in a new cutting pattern

In column generation terms:

- Thereduced cost tells us if a new pattern would improve the master solution
- Anegative reduced cost means the pattern would help decrease the objective value
- If no negative reduced cost pattern exists, we've reached optimality

If we find a beneficial pattern, we need to add it to the master problem and solve that to optimality.
The final implementation would be:

bool CS1D::price(Env pricerEnv, const Data& data, const std::vector<double>& u)
{

KPSolver kp(pricerEnv);

std::vector<double> z;

double value;

//CALL Kp.exec to solve the right knapsack problem and get
// the related objective function into < value >
//T0DO. ..

kp.exec(data.L, u, data.W, z, value);

//T0DO. ..

//"return false" if NO negative reduced cost variable exists

if (value <= 1 + le-5) return false; // 1 + le-5 is the tolerance for numeric
issues

// could be evem if(l - value > —-ZERO_EPS) return false;

// if the valye is 1.000001, the reduced cost is - 0.000001, which is negative.

// Because of possible numerical issues, we consider this number as 0.

// Add one column to RMP:
// prepare parameters for following *CPXaddcols*

//T0DO. ..

// - the vector idx of the indexes of the rows in which the variable appears
with (nonzero) oefficient

// - the vector coef of the (nonzero) coefficients related to the row indexes
above

// - the coefficient obj in the objective function

//...

std: :vector<int> idx;
std: :vector<double> coef;
int m = z.size();
for (int i = 0; i < m; i++)
{

if (z[i] > 1e-5)

{

idx.push_back(i);
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coef.push_back(z[il);

}
}
double obj = 1.0;
int matbeg = 0;

// add the variable to the model

CHECKED_CPX_CALL(C CPXaddcols, env, lp, 1, idx.size(), &obj, &matbeg, &idx[0],
&coef[0], NULL, NULL, NULL J;

//status = CPXaddcols (env, 1lp, ccnt, nzcnt, obj, cmatbeg, cmatind, cmatval, 1b,
ub, newcolname);

return true;

}

This implementation illustrates the elegant interplay between the master and pricing problems in
column generation.

- By solving a knapsack problem that uses the current dual values as profits and piece lengths
as weights, it efficiently identifies cutting patterns that could improve the overall solution

- The function handles numerical precision issues through careful tolerance checks and sparse
data structures, ensuring both reliability and computational efficiency

- Eachtime itfinds a beneficial pattern, it expands the master problem's solution space,
gradually building towards the optimal cutting strategy through an iterative process that only
generates patterns as they become potentially useful

Some of the results appear here:

Solving the linear relaxation
K Tt wxk LP_Obj x
5200
50.5
47
46.25

s (%] (5]
LP value: 46.25
Obtaining a HEURISTIC integer solution by rounding up...

INTEGER x: e 2} 9 5 2} 8 18
Value of an integer solution (round up): 48

Obtaining a HEURISTIC integer S.olution.t by branch-and-cut on the generated variables...
X = e 0 8 5 0 8 18 8
alue of an integer solution (B&B): 47
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ligi degiovanni@uni...

48] 7] 0

LP value: 46.25

Obtaining a HEURISTIC integer solution by rounding up...

INTEGER x: ] 0 9 5 2] 8 18
\Value of an integer solution (round up): 48

This implementation demonstrates the effectiveness of column generation for solving large cutting
stock problems:

1. The master problem starts with basic single-item patterns and progressively generates more
complex patterns only as needed.

2. The pricing mechanism efficiently identifies beneficial new patterns by solving knapsack
problems using the dual values from the master problem.

3. Thefinalinteger solutions are obtained through two different approaches:
o Simple rounding provides a quick but potentially loose bound
o Branch-and-bound on the restricted problem provides a more refined solution

The relatively small gap between the LP relaxation (46.25) and the best integer solution (47) suggests
that the column generation approach was effective at identifying good cutting patterns.
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WARNING - 1 was NOT able to compile this lab using the ilolpex import method as done before; there
is no actual way to make this project work even when modifying the Makefile and the cpxmacro. What
| did on Windows was to simply click “Build” (green Play button) above and to give as argument in

debug window one .dat file and it works! You can see below how (works with others too).

Debug ~ xb4

cC = g++
v CPPFLAGS = —-g -Wall -02 -D_WIN
—fpermissive —-DWIN3

-D_MSC_EXTENSIONS —3
- Configurazione:  Tutte le configurazioni Piattaforma:  Active(x64)

Pagine delle propriet ilolpex1
Gestione configurazione
4 Proprieta di configurazione | Debugger da awviare:
Generale

Avanzate Debugger Windows locale

LDLIBS = -lilocplex -leplex -1

Debug
Directory di VC++

b C/C++

b Linker

P Strumento Manifesto

b Generatore di documenti XN

b Informazioni di visualizzazic

b Eventi di compilazione

b Istruzione di compilazione g

b Code Analysis

Comanda

Argomenti del comanda
Directory di lavoro

Connetti

Tipo di debugger

Ambients

Esequi merge dell'ambiente
Debug SQL

Acceleratore predefinito AMP

$(TargetPath)
ismall.dat
$(ProjectDir)
No
Automatico

3
No
Acceleratore software WARP

0BJ = main.o knapsack.o csld.o

Comando
Comando di debug da eseguire.

Annulla

Debug Test Analizza  Strumenti Estensioni  Finestra

~ P Debugger Windows locale = | [>

~

oo EINl N

Solving the linear relaxation LP

*%%x IT 1 **%* LPobj: 52.1 x: 9.6
*%%x IT 2 **%* LPobj: 50.5 x: 8
*%% IT 3 *%x* LPobj: U7 x: 4.5
*%% IT U **xx LPobj: U6.25 x: ]

X: ¢} ] 8.25
LP value: 46.25

Obtaining a HEURISTIC integer solution by rounding up...

INTEGER x: ] <] 9 5 <] 8 18
Value of an integer solution (round up): 48

Obtaining a HEURISTIC integer solution by branch-and-cut on the generated variables...
X = <] ¢} 8 5 ] ] 18 8
Value of an integer solution (B&B): 47
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21 EXTRA: WINDOWS CPLEX COMPILATION — INFO & INSTRUCTIONS

To execute the code, we need in order:

- Visual Studio IDE (note: this is different from Visual Studio Code)
o Installing the Community Version from here
- AC++ compiler
o You can either use MinGW (here) or MSVC (done when selecting “Develop C++
applications” when installing Visual Studio
- CPLEX Studio installed on your machine (current version is 22.11)
o Allof the info present in the Moodle of the course here

The problem on Windows is evidenced by the fact that fatal errors might occur, like:

lex/ilocplex.h: No such file or directory
#include <ilcplex/ilocplex.h>

ANNNNNNNNNNNNNNNNNNN

compilation terminated.

Build finished with error(s).
The terminal process failed to launch (exit code: -1).

Terminal will be reused by tasks, press any key to close it.
[

As seen here, a normal execution of Cplex would include:
C:\Program Files\IBM\ILOG\CPLEX Studio Community20l\cplex\include
C:\Program Files\IBM\ILOG\CPLEX Studio Community20l\concert\include

These folder need to be configured inside of the additional inclusions and also additional
dependencies in the form of files and directives to the compiler.

The most recent versions (up to 2019, current is 2022) do not allow complete editing of the
compilation options as you might see here.

As found within the internal group of the course, the main problem seems to be that there is not
cpxmacro.h file inside of Windows installations, so if we try to use it in our project we have problem
with functions for declaration of env, adding variables and constraints.

- Also, after doing all the stuff that are mentioned inside the files (this or the above one) we need
to import cpxmacro.h in order to work properly and that we can use all APls and just everything
has to be imported before running all the code

- ltis easierto copy cpxmacro.h in the cplex/include folder and you can include it just with that
small adjustment
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21.1 WINDOWS CPLEX COMPILATION — SOLUTION 1

The solution is actually the following:

- Onceyou have installed Visual Studio and CPLEX on your machine, you should take some
ready-made examples, so to import a Solution file (basically, a configuration file which needs
to be imported in order to make the execution work) and then an executable file with a main()

The paths to consider for solution files are the following:

- C++files:

C:\Program
Files\IBM\ILOG\CPLEX Studio22ll\cplex\examples\x64 windows msvcl4\stat mda

- Cfiles:

C:\Program
Files\IBM\ILOG\CPLEX Studio22ll\cplex\examples\x64 windows msvcl4\stat mdd

These folders report a lot of different files which are the “Solution” files; we need to consider files with
extension .vcxproj. The goal here would be to first select a Solution file and then select a C/C++ file of
the same name. So:

- If youwant to execute a C example, go the “mda”
- Ifyouwant to execute a C++ example, go to “mdd”

For instance, let’s consider ilolpex1.vcproj, which is a C++ file:

+ CPLEX Studio2211 > cplex > examples > x64 windows msvcl4 > stat mda rca in stat_i

= W ‘N Ordina ~ = Visualizza -

Nome ifica Tipo Dimensione

=) iloindefqpex1.vexproj 0 02 VC++ Project 6 KB
VC++ Project
VC++ Project
VC++ Project

VC++ Project

We then need the actual source codes, which are to be linked with the respective vcxproj files of
before. Once again, it’s different for both formats:

- Cfiles:
C:\Program Files\IBM\ILOG\CPLEX Studio22ll\cplex\examples\src\c
- C++files:

C:\Program Files\IBM\ILOG\CPLEX Studio22ll\cplex\examples\src\cpp
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We then take the file of the same name as before:

IBM > ILOG > CPLEX Studio2211 > cplex > examples > sic > cpp

W 1l Ordina ~ = Visualizza ~

Nome Ultima modifica Tipo Dimensione
ilogo C 8: File di origine C++ 5KB
4 KB
File di o
ilolpex2.cpp 8: File di origine C++

B ilolpex3.cpp 8: File di origine C++

We need both files in order to import them into Visual Studio and then customize the code of the
actual source file (C/C++) so to make the code work fine. We then create a folder with a custom name
on a custom location with both files, like the following:

W Trial B stat mdd

& = Desktop > Trial

@ Nuovo * I N Ordina * = Visualizza ~
Nome i ific Tipo Dimensione
B Desktop » <] ilolpex1.cpp 05/ 24 5 File di origine C++ 6 KB

J Download T ilolpex1.vexproj 0 2 :15 VC++ Project 6 KB

- .
ﬁ; Apri un progetto o una
soluzione

cale o un file

i una cartella locale

d lorare e modificare il

Tutti i file di progetto (*sin;

Apri Annulla
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Once the prompt is open, select the Windows SDK version and multiplatform by default and continue.

in Esplora soluzioni (CTRL+&)
uzione ‘ilo del 1 progetto)
P [3 ilolpex1 (Visual Studio 2019)

Ridestina progetti

| progetti seguenti usano una versione precedente del set di strumenti della piattaforma
Visual C++. E possibile eseguire |'aggiornamento dei progetti in modo che sia possibile
usarli con la versione pill recente del set di strumenti Microsoft. E anche possibile

selezionare la versione di Windows SDK di destinazione da quelle installate nel computer.

Versione di Windows SDK: 10.0 (ultima versione installata) v

Set di strumenti piattaforma:; | Aggiornaav143 ~
Esplora soluzior

\Trial\ilolpex1.vexproj Proprietd

WARNING

At this point, since the vcxproj file points to files present in the previous path (so inside of the Cplex
path), it will tell you “Impossible to open file”, since it does not see the local path:

Esplora soluzioni

el 1 progetto)
2] ilolpex1
&0 Riferimenti
&1 Dipendenze esterne
ilolpex1.cpp

Microsoft Visual Studio

Ci\Users\roves\OneDrive\src\cpp\ilolpex1.cop
Impossibile aprire il file.

Esplora soluzioni

Ipex1.cpp Proprieta file

ilolpex1.cpp
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What you will do to solve this problem, is to right-click the name of project in the right menu present
(in this case where there is ilolpex1) and then click “Add” (Aggiungi) and then click on “Existing
element” (Elemento esistente):

Compila soluzione CTRL+MA

ia del codice
mpila soluzione

Eseguire Build | hts in Ricompila soluzione

Compilazione bat

G nfig
1Get per la soluzione...

cchetti N

Nuova visualizzazione Esplora soluzioni
Ridestina soluzione
Aggiungi
Configura progetti di avvio...
Crea repository GIT...
MAIUSC+A
Elemento esister MAIUSC+ALT+A L
Rinomina
Nuova cartella So

pri nel termin.
File di configurazione dell'installazione

Here we will select the actual C/C++ file:

Annulla

Please remove the old file, which is not to be found, so you have only one, the correctly imported file.
You should see something like this:
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We then build the actual file, and a command prompt window will feedback the right execution here
(this is a different execution, the example run in the laboratory, so you have an idea):

C:\Users\roves\OneDrive\[ X + | ~

Objective value: 96258

Flow
x_A2
x_A3
x_B1
x_B2
¢t x_C1
e x_C2
x_C3

values x_ij:

Truck values y_ij:

y_A2
y_A3
y_Bl1
y_B2
y_C1
y_C2
y_C3

1

1
1
<]
1

-0
1

Additional truck z = -8

Press any key to continue...

output di: Comp

This way, any kind of project works. This was tested both on C and C++ files.
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21.2 WINDOWS CPLEX COMPILATION — SOLUTION 2

Another way to make this work is to create a C++ project from scratch and then right click on the right
side menu on Properties so to open the following window — adapted from 4-5 page of this.

Then, one goes to “Linker” > “General” > “Additional library directories”:

umenti  Estensioni  Finestra  ? PO Cerca~  Project2 R Accedi -

LR~

GIT Progetto  Compilazione Debug Tes

Debug - x64 -~ P Debugger Windows locale ~ [> 8 GitHub Copilot 122 &
T x
P

(CTRL+8) P
ione "Project2” (1 del 1 progetto)
Project2
o0 Riferimenti

Pagine delle propriets Project2 7 X

E File di r

Configurazione:  Tutte le configurazioni | Piattaforma:  Active(x6d) v Gestione configurazione.

4 Proprieta di configurazione File di output

Mostra stato

$(OUtDINS(TargetName) S(Targetext)

Generale Non impostato

Avanzate i
Debug fersiane

Directory di VCs-+ Abilita collegamento incrementale <opzioni diverse>
4 Linker File di database dei collegamenti i $(mDin$(TargetName).ilk
Generale Non visualizzare messaggio di aw Si (NOLOGO)

Input Ignora libreria di importazione Mo

File manifesto
Debug
Sistema

Registra output No
Reindirizzamento per utente No
Collega dipendenze libreria si
Usa input dipendenze di libreria  No
Avanzate Stato collegamento

Ottimizzazione
IDL incorporato
Metadati Windows

Tutte le opzioni
Riga di comando

b Strumento Manifesto

b Generatore di documer

b Informazioni di visualiz

b Eventi di compilazione

Impedisci associazione DLL
Considera awvisi del linker come el
impani output di file

Crea immagine su cui applicare un

Directory librerie aggiuntive

Esplora soluzioni | Mod
Pro
Project? Propriet del progetto

B Vs
(Nom Project2

B e Epiay Cansente allutente di sostituire il percorso della libreria dell'ambiente. (/LIEPATH:cartella)

(oK ) semin | ppin

Diper progetto
File di progetto es\source\repos\

Spazio dei nomi radice ~ Proje

Here, one then adds the mda/mdd folders as path:

Directory librerie aggiuntive ? X

- || X || ||

CAProgram Files\[BEM\ILOG\CPLEX_Studio2211\cplex\lib\x64_windows_msvc14\stat_mda
CAProgram Files\[EM\ILOG\CPLEX_Studio221 1\cplex\lib\x64_windows_msve14\stat_mdd

Valore valutato:

1 C:\Program Files\IBM\ILOG\CPLEX_Studio2211\cplex\lib\x54_windows_msvcl4\stat_mda
C:\Program Files\IBM\ILOG\CPLEX_Studio2211\cplex\lib\x64_windows_msvcl4\stat_mdd
1 9%(AdditionalLibraryDirectories)

I

U

1

¢
Valori ereditati:

which are:, | remember:

- C:\Program

Files\IBM\ILOG\CPLEX Studio2211l\cplex\1ib\x64 windows msvcl4\stat mdd
- C:\Program

Files\IBM\ILOG\CPLEX Studio221l\cplex\1lib\x64 windows msvcl4\stat mda
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Then, in the “Linker” > “Input” tab, click on “Additional dependencies”:

Pagine delle proprieta Project2 ? X

Configurazione:  Tutte le configurazioni ~  Piattaforma:  Active(x64) ~ Gestione configurazione...
Generale Dipendenze aggiuntive cplex2211.libilocplex.lib:concert.lib;%(AdditionalDep
Avanzate

Ignora tutte le librerie predefinite

Debug " . .
Directory di VCs+ Ignor? Ilbre.r\.e predeﬂnlt.e specifick
4 Linker File di definizione moduli
Generale Aggiungi modulo all'assembly
Incorpora file di risorse gestite
File manifesto Imponi riferimenti al simbolo
Debug DLL a caricamento ritardato
Sistema

L Collega assembly e risorse
Ottimizzazicne 9 Y

IDL incorporato

Metadati Windows

MAvanzate

Tutte le opzioni

Riga di comande
Strumento Manifesto
Generatore di documer
Infermazioni di visualiz
Eventi di compilazione
Istruziene di compilazic Dipendenze aggiuntive
Code Analysis

Specifica altri elementi da aggiungere alla riga di comando del collegamento [kernel32 lib]

Annulla Apy

Add all of the files which are .lib files inside of the mda/mdd folders:

x64_windows_msvc14 > stat mda Cerca in stat_mda =+ x64_windows_msvc14 > stat mdd a in stat_mdd

o) T Ordina * = Visualizza * (B Dettagli N Ordina ~ = Visualizza ~ (3 Dettagli

Ultima modifica ipo : Nome Ultima modifica Tipo

They are concert.lib (concert directory of before and the two above files), separated with a semicolon
when inserted:

Dipendenze aggiuntive

cplex2211.lib
ilocplex.lib
concert.lib

Valore valutato:

cplex2211.lib

ilocplex.lib

concert.lib
%(AdditionalDependencies)
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22 WHAT TO INCLUDE IN A CPLEX PROJECT TO MAKE IT WORK ON
WINDOWS

Requirement

Set as env variable CPLEX to be easily found (test with terminal too):

Variabile Valore

AMNDROID_HOME C\Users\roves\AppData\Local\Android\Sdk
Chocolateylnstall C\ProgramData\chocolatey

ComSpec CAWINDOWS\system32\cmd.exe

CPLEX_STUDIO_BINARIESZ2.. C\Program Files\|BM\ILOG\CPLEX_Studia2211\opl\bin\x64_win64;C\Pr
CPLEX_STUDIO_DIR2211 C\Program Files\|BM\ILOG\CPLEX_Studio2211

DriverData CA\Windows\System32\Drivers\DriverData

GRADLE_HOME C\ProgramData‘\chocolatey\lib\gradle\tools\gradle-8.11.1

Step 1: Library Directories

- InProperties, navigate to:

o Configuration Properties > C++ > General
- Find "Additional Library Directories"
- Add these paths:

del 1 progetto)

Configurazione:  Tutte le configurazioni ~  Piattaforma: Active(x64) ~ Gestione configurazione...

4 Proprieta di configurazione

Directory di inclusione aggiuntive $(CPLEX_STUDIO_DIR2211)\cplex\include;$(CPLEX_STUL

Generale Directory #using aggiuntive
Avanzate Directory BMI aggiuntive
Debug Dipendenze aggiuntive modulo

Directory di VC++ Dipendenze aggiuntive unita di inteste

4 CfC++ Analizza le origini per cercare le diper No
GEI-VET-EHE . Converti include in import No
Ottimizzazione Formato informazioni di debug <opzioni diverse>
z’fﬂifio"re’"‘;" Supporta debug Just My Code <opzioni diverse>

Directory di inclusione aggiuntive

$(CPLEX_STUDIO_DIR2211)\cplexiinclude
$(CPLEX_STUDIO_DIR2211)\concertiinclude

Valore valutato:

; C\Program Files\IBM\ILOG\CPLEX_Studio2211\cplex\include
pith C\Program Files\IBM\ILOG\CPLEX_Studio2211\concert\include

Step 2: Library Dependencies

- InProperties, navigate to:
o Configuration Properties > Linker > Input
- Find "Additional Dependencies"
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- Add these libraries:

£ | =

Soluzione ‘ilolpe: 1 del 1 progetto)

[7] ilolpex1

Configurazione: Tutte le configurazioni ~ | Piattaforma:  Active(x64) ~ Gestione configurazione...

4 Proprieta di configurazione Dipendenze aggiuntive $(CPLEX_STUDIO_DIR2211)\cplex\lib\x64_windows_msvc14

Generale Ignora tutte le librerie predefinite
1 Avanzate Ignora librerie predefinite specifiche
$(CPLEX_BASE Debug File di definizione moduli

Directory di VC++ Aggiungi modulo all'assembly
b C/C++ Incorpora file di risorse gestite
X_BASE)/cple 4 Linker Imponi riferimenti al simbolo

= 1 IGeﬂeraIe DLL a caricamento ritardato el
'ij1 ~ Collega assembly e risorse small1.dat
File manifesto 3 small2.dat
Debug ck.cpp

Dipendenze aggiuntive

$(CPLEX_STUDIO_DIR2211)\cplex\lib\x64_windows_msvc14\stat_ mdd\ilocplex.lib
$(CPLEX_STUDIO_DIR2211)\concert\lib\x64_windows_msvc14\stat_mdd\concertlib

Valore valutato:

C:\Program Files\IBM\ILOG\CPLEX_ Studio2211\cplex\lib\x64_windows_msvc14\stat mdd\cplex2211.lib
C:\Program Files\IBM\ILOG\CPLEX_Studio2211\cplex\lib\x64_windows_msvc14\stat_mdd\ilocplex.lib

N C\Program Files\IBM\ILOG\CPLEX_Studio2211\concert\lib\x64_windows_msvc14\stat_mdd\concert.lib
i %(AdditionalDependencies)

Valori ereditati:

$(CoreLibraryDependencies)
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