

METHODS AND MODELS FOR COMBINATORIAL
OPTIMIZATION SIMPLE (FOR REAL)

GABRIEL ROVESTI

1 MeMoCO Simple (for real)

Written by Gabriel R.

1 TABLE OF CONTENTS

2 Introduction (1) .. 5

3 Modeling by linear programming (2) .. 7

3.1 Description and features ... 7

3.2 Optimal Production Mix – Perfumes ... 8

3.3 Minimum Cost Covering – Diet .. 9

3.4 Transportation Problem ... 10

3.5 Fixed Costs and Big-M Constraints ... 11

3.6 A more complex problem – Moving scaffolds (+ 2 Variants) ... 14

3.7 Emergency Location – Minimum Cost Covering .. 20

3.8 TLC Antennas – Minimum Cost Covering ... 23

3.9 Job Scheduling Problem – Four Italian Friends .. 26

3.10 Energy Flow Problem (Single/Multi) .. 31

3.11 Other Models: Pharmacy Federation Turns (Variant 1 and 2) .. 33

3.12 Other Models: Boat Construction ... 36

3.13 Other Models: Router Communication Network ... 40

4 Metaheuristics (3) ... 41

4.1 Classification of methods ... 43

4.2 Constructive Heuristics ... 44

4.3 Greedy Algorithms .. 45

4.4 Exact method algorithms and Simplification of Exact Procedures.. 46

4.5 Neighborhood and Local Search... 53

4.6 Local Search Scheme .. 56

4.7 Initial Solution and Solution Representation ... 57

4.8 Neighborhood Representation: Starting Solution and Representation 58

4.9 Complexity and evaluation function of solutions .. 60

4.10 Exploring strategies and LS application to TSP .. 61

4.11 Neighborhood Search/Trajectory Methods .. 68

4.12 Tabu Search .. 69

4.13 Simulated Annealing .. 77

4.14 Population-based heuristics ... 78

4.15 Genetic Algorithms: Schema, Encoding, Operators ... 80

4.16 Fitness Function and Genetic Operators ... 83

4.17 Population Management ... 88

2 MeMoCO Simple (for real)

Written by Gabriel R.

4.18 Observations on Genetic Algorithms: Calibration & Performance .. 89

4.19 Hybrid Metaheuristics .. 93

5 Linear Programming & Simplex Method (4)... 95

5.1 Definition and General Notations ... 95

5.2 Geometry of Linear Programming ... 97

5.3 Simplex Basic Algorithm and Example ... 108

5.4 Two-Phase Method ... 114

5.5 Simplex Algorithm in Matrix Form and Revised Algorithm .. 116

6 Review of Duality in Linear Programming (5) .. 124

6.1 Dual Problem Definition and Duality Theorems .. 125

6.2 Primal-dual Optimality Conditions ... 130

6.3 The Simplex Method and Duality... 132

6.4 Duality Example and Problem Modifications ... 134

7 Column generation methods (6) .. 140

7.1 An interesting problem: Cutting rods – Model and Solution ... 140

7.2 Algorithm for the 1D-CSP ... 145

7.3 Column generation methods for LP Problems .. 146

7.4 Implementation issues – Convergence .. 148

8 Solution methods for ILP – Branch and Bound and Alternative Formulations (7) 151

8.1 Branch and Bound – Definition of the problem .. 151

8.1.1 Complete Branch and Bound example .. 154

8.1.2 Formal Description and Model ... 159

8.1.3 Implementation Issues .. 160

8.2 Alternative formulations – Polyhedral approach to LP .. 163

8.2.1 Example: Facility Location Problem and Better Formulations .. 165

8.2.2 Convex Hull and Ideal Formulation .. 169

8.3 Cutting Plane Methods .. 176

8.3.1 Gomory Cuts .. 178

8.3.2 Complete Example .. 182

9 Cover inequalities (8) .. 189

9.1 Cover Inequalities for the Knapsack Problem ... 190

9.2 Separation Procedure .. 192

9.3 Cover Inequalities for General Binary Problems and General Procedure 194

9.4 Hybrid Methods, Exercises and CPLEX Output ... 197

10 FOR READING - Ideal Formulations, Assignment Problem and Total unimodularity (9) 201

3 MeMoCO Simple (for real)

Written by Gabriel R.

10.1 Assignment Problem .. 202

10.2 TU Matrices Properties and Other Problems ... 204

11 FOR READING - Exact Methods for the TSP – Models and Methods (10) 206

12 Last Meeting of the Course .. 209

12.1 First Part – Hybrid Metaheuristics ... 209

12.2 Second Part – Talking about the Exam .. 210

12.3 Third Part – Talking about the Exercise ... 211

13 Laboratory 1 - Solvers for Mathematical Programming (Docplex) .. 212

13.1 Make Docplex Run!... 214

14 Laboratory 2 – Solvers: Docplex (Continuation) ... 217

15 Laboratory 3 – Transportation and domains constraints .. 227

16 Laboratory 4 – Fixed costs model and Efficient structures ... 233

17 Laboratory 5 – CPLEX APIs – Intro, Constraints and Model example ... 236

18 Laboratory 6 – CPLEX APIs – Concluding Scaffolds modeling .. 251

19 Laboratory 7 – Neighborhood Search for the Symmetric TSP (Tabu Search) 255

20 Laboratory 8 – Column-generation based Heuristic for 1D-Cutting Stock Problem 270

21 Extra: Windows Cplex Compilation – Info & Instructions .. 278

21.1 Windows Cplex Compilation – Solution 1 .. 279

21.2 Windows Cplex Compilation – Solution 2 .. 284

22 What to include in a Cplex Project to make it work on Windows .. 286

4 MeMoCO Simple (for real)

Written by Gabriel R.

Disclaimer

This is the last ever file I wrote as of notes for courses, so I hope I matured enough having written this,
for every single course I have done up to now, bachelor and master included (and hope you saw and
used one, I tried my best always). So, I hope to have done something useful with these – I know that I

helped many and if I helped you I am glad, even though I was directly insulted and attacked by the few
people claiming to help others. I do not pretend to be exact, correct or precise, I think I am enough

though, just by reading one of these files you can understand it.

All of references are present and given it’s an informal file, shared between students, one does not
need a complete bibliography like papers – that I also wrote in other cases – for everything. Many

things can be found between the web or existing notes. But I think I did something useful, profound,
motivated by the will of community and helping both you and me, enthusiastic of learning and writing
(I think if you are not totally shallow to just take the credits and discredit unfairly other people you can
easily see that). I am leaving this to you. In case of feedback of whatever kind, contact me no problem.

Even to disagree with me, I’m always open for confrontation.

In any case: the file is organized not chronologically, but more content-wise, so you have theory first,
laboratories second (which were done many times coupled with the theory in detail, but for reading

sakes they are moved after the entire theory modules), so to immediately jump to content of your
interest when needed.

Another thing: many things were also translated by the professor notes in Italian (particularly, for the
metaheuristics part, partial in English, here complete with the class examples coming from

recordings) and also the Italian notes I recovered from GitHub of this course, written by Manzoli,
which are amazing in their own right and definitely useful for the most part (can recommend). If
possible, I tried, in my case as always if you read (for real) at least one file, to create a complete

resource (or as complete as possible) to be the only material of your reference. Slides not put by the
professor were taken by me from recordings and put on MEGA/Telegram.

The course was definitely a lot to work upon (but satisfying regardless): the theory doesn’t seem like it
in the beginning, but as seen by the file length and contents, well, you have to give a shit about that.
Also, the project, particularly for the second part, will be definitely time-consuming and something

which you have to work upon for quite a good amount of time.

There is a dedicated (informal) lesson for that at the very end of the course – since the professor
himself is very knowledgeable but also very long in presenting lessons, each year some topics are cut
out simply because of lack of time. Just telling you, latest lessons starting from October were all the

way up to the half of January – and always at least 1.20/1.30 of lesson. So yeah.

That’s all folks! – fucking finally, let me say!

5 MeMoCO Simple (for real)

Written by Gabriel R.

2 INTRODUCTION (1)

We start from the concept of combinatorial optimization: given a problem, find the best solution
inside of a set. This problem often occurs inside different fields.

- There is no best solution starting from the beginning, neither does the number matter: an
optimal solution has to be determined among a number of alternatives that combinatorially
explodes – consider for example the bike sharing rebalancing problem here

- Mathematics provides tools in order to solve problems practically from the real point of view
- After this course, one is expected to have the “ability to search for, find, understand, adapt

and implement state-of-the-art approaches to solve real-world combinatorial optimization
problems”

Problems seem different, but in reality they are similar:

- Logistic and transportation network: optimal origin-destination paths, optimal pickup/delivery
routes, line configuration, driver scheduling

- Production management: production and resource planning, job shop scheduling, optimal
cutting patterns

- Machine learning: optimal structure and weight of neural networks, clustering algorithms
- Data-driven decision making: cooling schedule based on massive simulation, air traffic

management based on trajectory repositories
- Optimization on graphs and networks: coloring, cliques, quickest paths, multicommodity

flows
- Telecommunication networks: telecom-facility location, virtual network configuration, optimal

routing
- Complex network analysis: community detection, maximize influence
- and many others…

A toy problem is the following, combining constraints with the goal of earning as much as possible,
with no costs since all resources are there:

The model can be solved by the Simplex algorithm, in order to iterate until no more solutions are
present, in which we make inequalities in order to represent constraints and then understand the
feasibility of all of them.

https://www.sciencedirect.com/science/article/pii/S0378437121009559

6 MeMoCO Simple (for real)

Written by Gabriel R.

Given a problem, we do not go into its details; given any problem, how to manage the combinatorial
explosion of the size of the solution space using a unifying approach?

Consider a problem:

There are different exact methods to solve problems with integer variables: Cutting planes [improved
geometry], branch-and-bound [implicit enumeration] (computational resources!) – they may take long
computational times, since they are NP-Hard problems.

A viable choice might be focusing on discrete choices, so to apply heuristic methods: exact methods
may be theoretically and computationally critical, heuristics still work.

Keep an eye to the course programme and general info here.

https://stem.elearning.unipd.it/pluginfile.php/897990/mod_resource/content/10/m00.intro.en.24.25.pdf

7 MeMoCO Simple (for real)

Written by Gabriel R.

3 MODELING BY LINEAR PROGRAMMING (2)

A toy example is the following, coming from the Introduction set of slides – here, the variable are
continuous – keep in mind:

“A farmer owns 11 hectares of land where he can grow potatoes or tomatoes. Beyond the land, the
available resources are: 70 kg of tomato seeds, 18 tons of potato tubers, 145 tons of fertilizer. The
farmer knows that all his production can be sold with a profit of 6000 Euros per hectare of tomatoes
and 7000 Euros per hectare of potatoes. Each hectare of tomatoes needs 7 kg seeds and 10 tons
fertilizer. Each hectare of potatoes needs 3 tons of tubers and 20 tons fertilizer. How does the farmer
divide his land in order to gain as much as possible from the available resources?”

We will translate such model as seen above with the following ones:

- Decision variables, symbolizing the decisions to be made
- Objective, meaning what we would have to optimize
- Constraints, which is a system of inequalities useful for the solution in order to be feasible

This all works because both the constraints and the objective function are linear, and the variables are
real numbers. This type of model is therefore called Linear Programming.

Note that in this case the optimal solution is on an integer vertex, but it’s only the case. If the variables
used can only be integers the situation becomes more complex because approximations must be
made. If we have the models, we have the solutions – so, let’s focus on the models.

3.1 DESCRIPTION AND FEATURES

More specifically, a mathematical programming model describes the characteristics of the optimal
solution of an optimization problem by means of mathematical relations. It provides formulation and
a basis for standard optimization algorithms.

- Sets: they group the elements of the system
- Parameters: the data of the problem, which represent the known quantities depending on the

elements of the system
- Decision (or control) variables: the unknown quantities, on which we can act in order to find

different viable solutions to the problem
- Constraints: mathematical relations that describe solution feasibility conditions (they

distinguish acceptable combinations of values of the variables)
- Objective function: quantity to maximize or minimize, as a function of the decision variables

Mathematical programming models where:

- The objective function is a linear expression of the decision variables
- The constraints are a system of linear equations and/or inequalities

8 MeMoCO Simple (for real)

Written by Gabriel R.

Classification of linear programming models:

- Linear Programming models (LP): all the variables can take real (ℝ) values
o There are poly-time algorithms for these – easy

- Integer Linear Programming models (ILP): all the variables can take integer (ℤ) values only
o These ones are NP-Hard – not easy

- Mixed Integer Linear Programming models (MILP): some variables can take real values and
others can take integer values only

o These are more difficult

3.2 OPTIMAL PRODUCTION MIX – PERFUMES

Linearity limits expressiveness but allows faster solution techniques – if we are able to linearize
models, they are simpler. From now on, we will discuss modeling schemas.

Consider the following example:

The variables here are continuous, since we are deciding the decalitres of perfume, so we call them:

- 𝑥𝑜𝑛𝑒 , 𝑥𝑡𝑤𝑜 for the two quantities of decalitres

Since they are real, we call them: 𝑥𝑜𝑛𝑒 , 𝑥𝑡𝑤𝑜 ∈ ℝ.

There are constraints here, since these ones need to be respected in order for the model to be valid;
for example, on the availability on the liter of rose, we have 1.5 liters of rose and one liter of rose:

1.5𝑥𝑜𝑛𝑒 + 𝑥𝑡𝑤𝑜 ≤ 27

Off we go with the other variables, so we have:

1.5𝑥𝑜𝑛𝑒 + 𝑥𝑡𝑤𝑜 ≤ 27 (𝑟𝑜𝑠𝑒)

𝑥𝑜𝑛𝑒 + 𝑥𝑡𝑤𝑜 ≤ 21 (𝑙𝑖𝑙𝑦)

0.3𝑥𝑜𝑛𝑒 + 0.5𝑡𝑤𝑜 ≤ 9 (𝑣𝑖𝑜𝑙𝑒𝑡)

𝑥𝑜𝑛𝑒 , 𝑥𝑡𝑤𝑜 ≥ 0 (𝑑𝑜𝑚𝑎𝑖𝑛𝑠 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)

9 MeMoCO Simple (for real)

Written by Gabriel R.

A possible modeling schema is the following, to represent the optimal production mix:

A side note: if we have negative numbers in variable for constraints, this means we are creating
resources, unless not specified inside of the constraints.

3.3 MINIMUM COST COVERING – DIET

Another model called the diet problem:

We would need to minimize the cost, and the decision variable are kilos of veggies, meat and fruits.

10 MeMoCO Simple (for real)

Written by Gabriel R.

A more general schema for this problem is the minimum cost covering, also called infact diet
problem.

It’s important to create schemas inside of our mind since modeling needs to be modularized dividing
the data, the model and the formulations.

Side note: 𝑥𝑗 ∈ ℝ+[ℤ+ | {0,1}] ∀𝑗 ∈ 𝐽

Means the variables xj are non-negative real numbers, with the optional additional constraint of being
integers or binary.

This allows the modeling schema to be flexible and cover different variants of the problem:

- Continuous variables: just 𝑥𝑗 ∈ ℝ+
- Integer variables: 𝑥𝑗 ∈ ℝ+and ℤ+
- Binary variables: 𝑥𝑗 ∈ ℝ+and {0,1}

The modeler can choose which constraint is appropriate when applying this schema to a specific
production mix optimization problem. The square brackets succinctly show these options in the
general modeling framework.

3.4 TRANSPORTATION PROBLEM

Another problem, which is called the transportation problem:

11 MeMoCO Simple (for real)

Written by Gabriel R.

A possible schema to represent this one is the transportation problem:

To completely resolve the problem, we would have to write an example to represent cost minimization

- A company produces refrigerators in three different factories (A, B, C) and has to move them to
4 warehouses (1,2,3,4). The production of the factories is 50, 70 and 20 respectively. The
warehouses can contain 10, 60, 30 and 40 units

- The cost of moving refrigerators is shown in the following table:

3.5 FIXED COSTS AND BIG-M CONSTRAINTS

Now we introduce the notion of fixed costs:

These are problems of the kind where decisions are taken about what actions to take. Each action has
a fixed cost but produces some gain. The aim is to determine what actions should be taken under
some constraints regarding the actions.

12 MeMoCO Simple (for real)

Written by Gabriel R.

Modeling this problem requires a reasoning which might introduce non-linearity – we introduce for this
specific reason the concept of linear variables:

We use binary variables to represent “IF” we open a store, then something happens; we want to keep
constraints linear in order to have acceptable times of computation for the algorithms of solvers
implemented.

Given this formulation would deviate the problem making it go into quadratic programming, we do not
do this but try to linearize it. There is a link between 𝑥𝑖 and 𝑦𝑖, so we try to write this expression with a
constraint.

As you can see we introduce 𝑀, generally called Big-M, which is a modeling technique used in mixed-
integer programming to enforce logical conditions. In this case, it's used to relate the continuous
variable 𝑥𝑖 (store size) to the binary variable 𝑦𝑖 (whether a store is opened or not).

The Big-M value should be "large enough" to allow the maximum possible store size when a store is
opened (𝑦𝑖 = 1), but also ensure that xi is forced to 0 when a store is not opened (𝑦𝑖 = 0).

13 MeMoCO Simple (for real)

Written by Gabriel R.

This definition of 𝑀 is clever because:

- It's large enough to never constrain a valid solution
- It's not unnecessarily large, which could lead to numerical issues in solvers
- It's based on the problem parameters, so it automatically adjusts if the budget or costs

change

This is only then a technicality to write quadratic constraints into a linear form.

In every feasible solution of this model, 𝑥𝑖 has no different value from:

𝑥𝑖 ≤
𝑊 − 𝐹𝑖

𝐶𝑖

The constant must be small, but not that much.

Suppose we want to open at least three stores: so, the constraint should be ∑ 𝑦𝑖 ≥ 3𝑖∈𝐼 . This,
however, is not enough since there is no enforcement relationship between the 𝑥𝑖 and 𝑦𝑖. This is, once
again, useful since the fixed cost notion is useful in fact for this.

Completely, just to see it under your eyes well-posed:

One variant of this model is that which provides for an upper limit 𝑈𝑖 to the amount of action 𝑖 ∈ 𝐼 that
can be taken. In this case, the BigM constraints can be replaced with 𝑥𝑖 ≤ 𝑈𝑖𝑦𝑖 , ∀ 𝑖 ∈ 𝐼

14 MeMoCO Simple (for real)

Written by Gabriel R.

3.6 A MORE COMPLEX PROBLEM – MOVING SCAFFOLDS (+ 2 VARIANTS)

We have another problem, important for lab examples – moving scaffolds:

The problem is referring to the transportation schema; with these class of problems, usually it is
useful to understand the similar problem(s) and then try to figure out the actual schema.

All of the elements are here:

15 MeMoCO Simple (for real)

Written by Gabriel R.

Some comments, step by step:

- We want to take the origins and destinations, considering the costs of transportation but also
the material costs, which are fixed. The binary variables refer to the choice of using or not a
specific truck. There is also an additional cost for a specific truck, depending on the previous
choice

- Origins and destinations are to be respected and also linked, considering the truck capacity
and the fact specific trucks need to be available

We did not consider this constraint, which is in some way logical:

Actually, since this is all numbers up to now (linear), we should not represent such relationship as the
following (logical constraint):

𝐴2 𝑁𝐴𝑁𝐷 𝐵2

The situation would be represented by the following:

16 MeMoCO Simple (for real)

Written by Gabriel R.

Of course, we should be able to represent such construction (since this is a Boolean operator), similar
to a truth table as a combination of feasibility and infeasibility; the right way would be:

𝑦𝐴2 + 𝑦𝐵2 ≤ 1

However, we can construct a variant of the previous considering:

With binary variables, we would represent the situation as the following:

A constraint like the following would make the model non-linear:

Actually, to write this, we would write something like the following, but the ceiling function is not
linear:

min ∑ 𝑐𝑖𝑗𝑥𝑖𝑗 + 𝐹∑ ⌈
𝑥𝑖𝑗

𝑘
⌉

We link the two variables with a linear inequality, also adding an integer variable 𝑤𝑖𝑗, writing for
example a relationship between the already-existing decision variables:

𝑤𝑖𝑗 ≥
𝑥𝑖𝑗

𝑘

17 MeMoCO Simple (for real)

Written by Gabriel R.

This way, it becomes a linear expression. The following is the complete reasoning that brings us to
these conclusions (better up to now from an algorithmic point of view):

In complete form, it appears like this (moving scaffolds – variant 1 – limited truck capacity). We cannot
write the following into the model, it’s not linear to use the ceiling function:

Ceiling is an unknown; the number of needed tracks using linear constraints combines with a relation
(division) numbers to use the ceiling and make it linear:

18 MeMoCO Simple (for real)

Written by Gabriel R.

Now, completely:

In conclusion:

A possible variant of this problem may be the addition of constraints on the maximum capacity 𝐾 of
trucks. Previously it was assumed that 𝐾 was high enough to ensure that a truck could move
everything needed. To manage this situation you need to change the variables 𝑦𝑖,𝑗 ∈ {0,1} into whole
variables, which represent how many trucks are needed in a given route.

As a result, some constraints also change:

Instead consider this other option, based on the following constraint (moving scaffolds – variant 2 –
fixed costs to load the trucks):

It’s better to move stuff in a mixed way, where each operation has fixed costs, which represents the
decision “should I move something from 𝐼?”:

19 MeMoCO Simple (for real)

Written by Gabriel R.

Constraints are once again linear, so everything works:

So, in conclusion:

There is a fixed cost for loading the beams into 𝐼. To model this, a binary variable is used which is 1 if
goods are loaded into site 𝑖. Model changes concern target function and trigger constraints for new
variables 𝑣𝑖 ∈ {0,1}:

Sometimes modelling does not mean reinventing the wheel, but instead adopting a literature-based
one and then constructing a problem upon it. Perhaps you may find it somewhere but adapt it to your
problem.

Let’s try to complete the following:

To complete the model with this constraint and generalize it, we can add:

𝑦𝑖𝑗 + 𝑦𝑘𝑗 ≤ 1 ∀ 𝑖, 𝑘 ∈ 𝐼, 𝑖 ≠ 𝑘, ∀ 𝑗 ∈ 𝐽

This constraint ensures that for any destination 𝑗, at most one origin site can send rods there using a
truck. In other words, the rods arriving at site 𝑗 cannot come from both sites 𝑖 and 𝑘.

The specific constraint 𝑦𝐴2 + 𝑦𝐵2 ≤ 1) is just one instance of this more general constraint, ensuring
rods arriving at site 2 cannot come from both sites 𝐴 and 𝐵.

20 MeMoCO Simple (for real)

Written by Gabriel R.

Adding this generalized constraint to the model gives:

𝑚𝑖𝑛 ∑ 𝐶𝑖𝑗 ∗ 𝑥𝑖𝑗𝑖∈𝐼,𝑗∈𝐽 + 𝐹 ∗ ∑ 𝑦𝑖𝑗 + (𝐿 − 𝐹)𝑧𝑖∈𝐼,𝑗∈𝐽

𝑠. 𝑡. ∑ 𝑥𝑖𝑗 ≥ 𝑅𝑗, ∀𝑗 ∈ 𝐽𝑖∈𝐼

∑ 𝑥𝐼𝑗𝑗∈𝐽 ≤ 𝐷𝑖 ∀ 𝑖 ∈ 𝐼

𝑥𝑖𝑗 ≤ 𝐾 ∗ 𝑦𝑖𝑗 ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

∑ 𝑦𝑖𝑗𝑖∈𝐼,𝑗∈𝐽 ≤ ℕ + 𝑧

𝑦𝑖𝑗 + 𝑦𝑘𝑗 ≤ 1 ∀ 𝑖, 𝑘 ∈ 𝐼, 𝑖 ≠ 𝑘, ∀ 𝑗 ∈ 𝐽

𝑥𝑖𝑗 ∈ ℤ+ ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

𝑦𝑖𝑗 ∈ {0,1} ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

𝑧 ∈ {0,1}

This generalized constraint captures the requirement that rods arriving at any destination cannot
come from multiple origins using trucks, which is a logical extension of the specific constraint given
for site 2.

3.7 EMERGENCY LOCATION – MINIMUM COST COVERING

Let’s go on with the following exercise – emergency location schema:

21 MeMoCO Simple (for real)

Written by Gabriel R.

The problem is not so clear; is there a way to find a feasible solution for this problem? In this way, we
understand the decisions to make. Decisions are related to locations, so to open or not – using ofc
binary variables and relating them all between each other:

The actual schema where this comes from is the following, since we need to arrive to the hospital
within 15 minutes:

22 MeMoCO Simple (for real)

Written by Gabriel R.

We see the problem model changes a bit – this is a covering schema:

 Is the problem similar to something we already saw? Yes, since requests are related to zones, and we
want to cover locations.

This depends on whether we open a specific location or not:

23 MeMoCO Simple (for real)

Written by Gabriel R.

3.8 TLC ANTENNAS – MINIMUM COST COVERING

A different problem is the following – TLC antennas location:

In this case, we want to cover all of the areas in which signal levels should be acceptable enough in
order to cover everything. We see here how the constraints are posed:

24 MeMoCO Simple (for real)

Written by Gabriel R.

The problem is similar to the previous one, although there are slightly different constraints.

There is a set 𝐼 with the possible sites and a set 𝐽 with the possible areas. The signal strength in area
𝑗 ∈ 𝐽 from the antenna at site 𝑖 ∈ 𝐼 is modelled by parameters 𝜎𝑖,𝑗. There is then parameter 𝑇 which
represents the minimum signal strength (18) and 𝑁 which is the maximum number of signals that can
overlap in an area (1).

- The first difference with the previous problem is the objective function, before you wanted to
minimize the cost and now you want to maximize coverage

- The second difference concerns the constraints, which in this case are related to the signal
overlap and the minimum threshold

The choice, and therefore the variables, is where to place an antenna, so binary xi variables are used
which are worth 1 if an antenna is placed in site i. However, using only xi does not express well the
objective function, Another set of binary variables is needed to indicate whether a given area 𝑗 is
covered (𝑧𝑗).

The model is therefore:

Constraints (1) link variables relating to the coverage of a given area with antennas which are able to
cover it. The constraints (2) require that an area be covered by at most 𝑁 signals (1 for this instance of
the problem).

The second part of these constraints concerns areas we are not interested in covering, that is those
areas for which 𝑧𝑗 = 0, and therefore if there are interferences there are no problems. This works
because when 𝑧𝑗 = 0, the constraint becomes 𝑥𝑖 ≤ 𝑁 + 𝑀𝑗 where 𝑀𝑗 is a number large enough to
make the constraint redundant and does not go to limit the space of solutions. An optimal value for 𝑀𝑗

is the cardinality of all sites covering area 𝑗, which is 𝑀𝑗 = |{𝑖 ∈ 𝐼: 𝜎𝑖,𝑗 ≥ 𝑇}|

25 MeMoCO Simple (for real)

Written by Gabriel R.

Decisions on areas should be made, considering whether we want to cover a specific area or not. We
need a remodeling based on redundant constraints on a binary variable which makes us question
whether the opening of specific areas or not is done:

Levels depend on the zones covered and the signals reached, whether they are installed within
specific sites or not:

26 MeMoCO Simple (for real)

Written by Gabriel R.

Can we write linearly the opening conditions? Not so much, since if we cover a site, we do not cover
the other one:

This brings to write the following constraint:

3.9 JOB SCHEDULING PROBLEM – FOUR ITALIAN FRIENDS

We consider a different modeling schema – newspaper reading (four Italian friends):

27 MeMoCO Simple (for real)

Written by Gabriel R.

In this case, we refer to a schema so called Job-Shop Scheduling Problem (JSP), which has these
characteristics:

- No preemption
- Sequence constraints (specific reading order for each person)
- Release dates (different wake-up times)
- Single machine capacity (one newspaper can be read by one person at a time)
- Minimize makespan objective

The origin of the name comes from the sequence of operations on different machines (jobs), with
different workshops/facilities where processing happen, processing all jobs available (makespan):

Let’s try to understand the model; the decisions are:

- “At what time each person starts reading the newspaper”
- Minimize the maximum value in which each person finishes
- The time when each person finishes reading must be at least as large as when each person

finishes their last paper

min 𝑦 = (max
𝑖∈𝐼

{ℎ𝑖,𝜎[𝑖,|𝐾|) + 𝐷𝑖,𝜎[𝐼,|𝐾|)}

At a time, people can have a conflict in which at the same time they read the same things – given it’s a
decision. Now, let’s analyze each constraint:

- Linking the makespan to actual completion times
o For each person i, y must be ≥ their start time on their last paper (𝜎[𝑖,|𝐾|]) plus its

duration
- No one can start their first paper (𝜎[𝑖,1]) before their wake-up time (𝑅𝑖)
- Person i can't start their ℓth paper before finishing their (ℓ-1)th paper

Given two persons and a newspaper, what is the exact order between the variables? We don’t know,
specifically the order between 𝑖, 𝑗, 𝑘, that’s where the variable 𝑥𝑖𝑗𝑘 comes from.

28 MeMoCO Simple (for real)

Written by Gabriel R.

The maximum function is not a linear function, so we have to linearize it, introducing 𝑦. We talk here
about disjunction constraints, which represent union between binary variables and also their
intersection (e.g., different turns).

Their purpose is the following:

- These constraints handle the "either-or" situation where newspaper 𝑘 must be read by either
person 𝑖 or person 𝑗 at any given time

- They enforce the resource capacity constraint (one newspaper can only be read by one person
at a time)

This is also represented by:

The maximum makespan has to be linearized and make constraint redundant when one stops reading
(introducing binary variables), choosing a specific order:

29 MeMoCO Simple (for real)

Written by Gabriel R.

 Completely:

The constraints are the following:

The meaning of constraint sets is:

1. The makespan must be greater than or equal to the time of completion of each person’s last
activity. In short words these constraints ensure that everyone finishes reading before the y-
moment.

2. Avoid overlapping two steps of the same activity. A person cannot read two newspapers at
once.

3. The first step cannot be taken before the activity begins. A person cannot read while sleeping.
4. It states that if the person 𝑖 reads the newspaper 𝑘 before the person 𝑗, the moment when

𝑖 begins reading 𝑘 is any instant, while if 𝑖 does not read 𝑘 before 𝑗 (𝑥𝑖,𝑗,𝑘 = 0), then 𝑖 must start
reading 𝑘 after 𝑗 has finished.

30 MeMoCO Simple (for real)

Written by Gabriel R.

5. It requires that if the person 𝑖 reads the newspaper 𝑘 before the person 𝑗, the moment when 𝑗
begins reading 𝑘 is subsequent to the instant when 𝑖 ends. This and the previous link are
mutually exclusive.

Consider the following example:

The Gantt charts show two different scenarios for scheduling just A and B:

1. First Scenario (11:53 completion):
1. Shows 𝐴 reading all papers before 𝐵
2. Results in a later completion time (11: 53)

2. Second Scenario (11:10 completion):

1. Shows 𝐵 reading Stampa before 𝐴
2. Results in an earlier completion time (11: 10)
3. Demonstrates how allowing 𝐵 to read Stampa before 𝐴 leads to a better overall

schedule

This example illustrates key JSP concepts:

- Resource conflicts (can't read same paper simultaneously)
- Sequence dependencies (must follow specific order)
- Release time constraints (can't start before wake-up)
- How different sequencing decisions affect makespan
- The importance of finding optimal ordering to minimize completion time

The two scenarios effectively demonstrate how the disjunctive constraints work in practice – either
𝐴 reads before 𝐵 or 𝐵 before 𝐴 on shared resources (newspapers), leading to different possible
schedules and completion times.

31 MeMoCO Simple (for real)

Written by Gabriel R.

3.10 ENERGY FLOW PROBLEM (SINGLE/MULTI)

We go into the details of a different problem here (energy flow problem), which can be used to
describe a Network Flow Problem, specifically a Minimum Cost Network Flow Problem, where we
discuss production capacities being sent between stations and units of energy which can be used:

This production network flow example shows 5 nodes with their demand (d) and production (p) values,
moving the energy between places so to balance it.

To plan the distribution we have to decide how much energy is transferred from one station to another
𝑥𝑖,𝑗 = amount of energy transferred from 𝑖 to 𝑗.

An interesting feature of this problem is that it can be modeled as a graph 𝐺 = (𝑁, 𝐴) whose nodes
correspond to the energy stations and the arcs represent the connections between the various
stations.

To simplify the problem modelling, it is possible to add a bv parameter for each 𝑣 ∈ 𝑁 node in the
network which represents the difference between the demand that the station must satisfy and the
amount of energy it can produce:

- if 𝑏𝑣 is a positive value, the demand is higher than the station’s capacity and therefore energy
from other stations needs to be transferred

32 MeMoCO Simple (for real)

Written by Gabriel R.

- if 𝑏𝑣 is a negative value, the station produces more energy than needed and therefore the
excess energy must be sent to the other stations

- if 𝑏𝑣 = 0, the station is self-sufficient or a transmission node because 𝑝𝑣 = 𝑑𝑣 = 0

We define the objective function:

Now, pose the constraints that each node receives exactly bv units of flow (negative if they are to be
removed) (node balance constraint).

Finally, it is necessary to impose a limit on the capacity of cables (arc capacity constraint):

This model has unique features, representing a minimum cost flow inside of a network: generally, we
can describe the below as: “Find the cheapest way to send energy from producers (supply nodes) to
consumers (demand nodes) through a network of wires (arcs), respecting capacity limits and ensuring
flow balance at each station (node). Consider the flow has to be balanced between the quantity
coming in and the quantity coming out.

This is a single-commodity type of problem, where there is one type of flow, where each arc has one
capacity constraint, which is easier to solve.

One variant of the problem is where there are each station handles various types of energy and the
cost of transport depends on the type.

- The capacity of the bows is not affected by the type of energy passing through
- The solution to this problem is similar to that of the classical version, with the difference that

another index is used for parameters and variables which discriminates between types of
energy

33 MeMoCO Simple (for real)

Written by Gabriel R.

This is the multi-commodity variant, where there is shared arc capacity across commodities but also
flow conservation per node AND per commodity.

- This is more complex to solve because many more variables and constraints are needed since
the flows depend on each other. If these were independent it would be possible to decompose
this problem in |𝐾| minimum flow problems and then combine the various solutions

3.11 OTHER MODELS: PHARMACY FEDERATION TURNS (VARIANT 1 AND 2)

In this section, using older notes, we want to complete the topic of modelling by including other
models present inside of the notes by the professor.

In this case we want to decide which pharmacy does which shift, so that there is good coverage of the
territory, assuming that people go to the nearest pharmacy. The aim is therefore to minimise the road
people have to take to reach the pharmacies on duty. You certainly need a variable that specifies
which pharmacy is open in which shift.

with 𝑖 ∈ 𝑃, 𝑘 ∈ (1, … 𝐾), where 𝑃 is the set of pharmacies and 𝐾 is the number of turns we want to be
done. To express our objective function we need other variables, because we also have to consider
the distance of pharmacies, so that we can minimize it.

34 MeMoCO Simple (for real)

Written by Gabriel R.

- There will then be set C of clients that need to be served and parameters specifying the
distance 𝐷𝑗,𝑖. The distance between a customer 𝑗 ∈ 𝐶 and the pharmacy 𝑖 ∈ 𝑃.

- However, the distance to be travelled by the user depends on which pharmacies are open in a
given shift and therefore it is not advisable to use the parameter directly, since the distance
varies according to the shift

- It is therefore advisable to add a variable specifying how much road the customer 𝑗 must take
during shift 𝑘 to reach the nearest open pharmacy

𝑑𝑗𝑘 = distance between customer 𝑗 and nearest pharmacy during shift 𝑘

However, it is necessary to somehow connect the variables 𝑑𝑗𝑘 with the opening/closing of
pharmacies. There is therefore a way of discriminating against which pharmacy the user goes to in a
given shift:

This way it is easy to find value for 𝑑𝑗,𝑘, because the constraint is enough:

With this constraint only a distance is considered for each shift, because during a shift the customer
always goes to the nearest pharmacy and then, set a 𝑗 and a 𝑘, there will be only one 𝑥𝑗,𝑖,𝑘 which is 1.
The solver does not know this last thing and therefore it is necessary to add the appropriate
constraints:

There is still no requirement that each pharmacy should work exactly one shift, which can simply be
added with a sum on the 𝑦𝑖,𝑘:

To complete the model it remains to connect the 𝑥 with the 𝑦, because obviously a customer cannot
go in a closed pharmacy.

It also remains to be required that each shift be balanced, that is, there should always be a similar
number of open pharmacies:

We then specify variables domains:

35 MeMoCO Simple (for real)

Written by Gabriel R.

Too bad there’s a problem. With the current constraints we have expressed that for each shift a
customer always goes to the same pharmacy and that that pharmacy must be open, but it is not
specified that the customer goes to the nearest pharmacy.

- Actually this is not a problem, because it is during the optimization process that the various
distances are set to be minimized

- This is because the objective of a model is to describe the characteristics of a solution, while it
is the solver who is looking for the optimal solution performs minimization

- In fact, a solution that sends a customer to a different pharmacy from the open one closest to
him is still an acceptable solution, but it is certainly not great and therefore discarded

Some observations:

- Once an optimal solution has been found for this problem, it can be observed that by
swapping the order of turns obtained, another optimal solution is obtained with a different
order

- This is caused by the fact that once the pharmacies are chosen which are open in the various
shifts, the order in which the shifts are carried out is indifferent, thus obtaining a symmetrical
solution

- The presence of these symmetries is typically a problem because it can lead to a
combinatorial explosion of solutions

- The origin of these symmetries is typically caused by the model, in this case the problem
stems from the fact that "a name" is given to the turns and it is not always possible to re-model
the problem so that there are no symmetries

An alternate version for this problem formulation is the following one.

Since we have a set of pharmacies 𝑃 and each pharmacy only does one shift, we can see a shift as a
subset of 𝑃.

The choice of shifts becomes a choice of which subsets to select from the set of 2𝑃 parts. This choice
can be modelled with a binary variable.

With this variable there is no symmetry as the variable is directly related to the turn it represents. The
minimization to be done then becomes (𝑗 represents the customers, 𝐽 the turn).

In the objective function, the variable 𝑑𝑗,𝑘 no longer appears, but a parameter 𝐷𝑗,𝐽 appears, because in
the previous formulation the composition of the various shifts was variable and consequently the
distance also changed according to the composition of the shift, With this new model I know a priori
which pharmacies belong to a certain shift and therefore for each shift and for each client I can pre-
calculate the minimum distance.

36 MeMoCO Simple (for real)

Written by Gabriel R.

There are other constraints that need to be re-formulated. To specify that you are exactly 𝐾 turns, just
add up the 𝑥𝐽.

It is also necessary to impose the constraint that each pharmacy should work exactly one shift,
because at the moment the same pharmacy can appear in several shifts (subsets). In this case, an
additional parameter is needed to specify whether a pharmacy is on a certain shift.

Note that it is a parameter and not a variable because it is a value that can be pre-calculated when the
set of parts is constructed. With these parameters it is easy to establish the constraint that a
pharmacy should only take one shift.

It remains to shape the fact that shifts must be balanced, but to do this we do not need new
constraints. In fact it is sufficient to consider, instead of the whole set of parts 2𝑃, a subset G
composed only by the subsets of 𝑃 that have similar cardinality.

This model has no symmetries and is quite simple, however it suffers from a big problem: if there are
100 pharmacies, the calculation of the set of parts of 𝑃 and parameters can take too long because of
the exponential growth of the cardinality of the set of parts.

3.12 OTHER MODELS: BOAT CONSTRUCTION

37 MeMoCO Simple (for real)

Written by Gabriel R.

First, let me explain the key elements of the problem:

1. We have 9 operations (𝐴 through 𝐼) with given durations and precedence relationships
2. There are two pairs of alternative operations:

o Either 𝐵 or 𝐶 must be executed (not both)
o Either 𝐹 or 𝐺 must be executed (not both)

3. Special condition: If both 𝐶 and 𝐺 are executed, operation 𝐼 takes 2 days longer

Let’s see now the key components of this model:

Variables:

- 𝑡𝑖: Completion time of operation 𝑖
- 𝑦𝑖: Binary variable for alternative operations (𝐵, 𝐶, 𝐹, 𝐺)
- 𝑦𝐶𝐺: Binary variable that tracks if both 𝐶 and 𝐺 are executed
- 𝑧: Overall completion time (objective to minimize)

Constraints:

1. Precedence relationships (e.g., 𝑡𝐵 ≥ 𝑡𝐴 + 𝑑𝐵)
2. Mutually exclusive operations (𝑦𝐵 + 𝑦𝐶 = 1 and 𝑦𝐹 + 𝑦𝐺 = 1)
3. Special condition for 𝐼's duration when 𝐶 and 𝐺 are both selected
4. All operations complete by time 𝑧

To find the optimal solution, we need to:

1. Determine which alternative operations to select
2. Schedule the selected operations to minimize total duration

The optimal solution to this problem would be:

1. Select operation 𝐵 over 𝐶 (better for precedences)
2. Select operation 𝐹 over 𝐺 (shorter path to completion)
3. Schedule operations in this order: 𝐴 (0 − 2)𝐵 (2 − 6)𝐷 (2 − 7)𝐸 (6 − 9)𝐹 (9 − 12)𝐻 (12 −

19)𝐼 (19 − 23)
4. Total duration = 23 days

This is optimal because:

- Choosing 𝐵 (4 days) over 𝐶 (2 days) allows for better parallel execution with 𝐷
- Choosing 𝐹 over 𝐺 avoids the 2-day penalty on operation I
- The critical path is 𝐴 → 𝐵 → 𝐸 → 𝐹 → 𝐻 → 𝐼

The following MILP formulation:

- Minimizes overall completion time
- Ensures precedence relationships are respected
- Handles alternative operations through binary variables
- Captures the duration increase for operation 𝐼 when 𝐶 and 𝐺 are both selected

38 MeMoCO Simple (for real)

Written by Gabriel R.

A more general representation is left here for the reader.

Sets

- 𝑇: set of tasks
- 𝑃 ⊆ 𝑇 𝑇: precedence relationships
- 𝐴 = {𝐴₁, . . . , 𝐴ₖ}: groups of alternative tasks where each 𝐴ᵢ ⊆ 𝑇
- 𝐼 = {(𝑆, 𝑡, 𝛿)}: task interactions where:

o 𝑆 ⊆ 𝑇: set of interacting tasks
o 𝑡 ∈ 𝑇: affected task
o 𝛿: duration increase

39 MeMoCO Simple (for real)

Written by Gabriel R.

Parameters

- 𝑑ᵢ: duration of task 𝑖
- 𝑀: large constant

Variables

- 𝑡ᵢ ≥ 0: completion time of task i
- 𝑦ᵢ ∈ {0,1}: 1 if task i is selected
- 𝑤ₛ ∈ {0,1}: 1 if all tasks in set 𝑆 are selected
- 𝑧 ≥ 0: project makespan

Objective: 𝑚𝑖𝑛 𝑧

Subject to:

Time constraints

- Precedence relationships: 𝑡ⱼ ≥ 𝑡ᵢ + 𝑑ⱼ − 𝑀(1 − 𝑦ⱼ), ∀(𝑖, 𝑗) ∈ 𝑃
- Project completion: 𝑧 ≥ 𝑡ᵢ, ∀𝑖 ∈ 𝑇

Selection constraints

- Alternative tasks: 𝛴𝑗∈𝐴ᵢ 𝑦ⱼ = 1, ∀𝐴ᵢ ∈ 𝐴
- Task execution control: 𝑡ᵢ ≤ 𝑀 ∗ 𝑦ᵢ, ∀𝑖 ∈ 𝑇

Interaction constraints

- Detecting task combinations:
o 𝛴𝑖∈𝑆 𝑦ᵢ − |𝑆| + 1 ≤ 𝑤ₛ, ∀(𝑆, 𝑡, 𝛿) ∈ 𝐼

o 𝑤ₛ ≤ (
1

|𝑆|
) · 𝛴(𝑖∈𝑆) 𝑦ᵢ ∀(𝑆, 𝑡, 𝛿) ∈ 𝐼

- Duration adjustments: 𝑡ₜ ≥ 𝑡ⱼ + 𝑑ₜ + 𝜎 ∗ 𝑤ₛ ∀(𝑆, 𝑡, 𝛿) ∈ 𝐼, ∀𝑗: (𝑗, 𝑡) ∈ 𝑃

Example application (boat construction):

- Tasks 𝐵/𝐶 are alternatives: 𝑦𝐵 + 𝑦𝐶 = 1
- Tasks 𝐹/𝐺 are alternatives: 𝑦𝐹 + 𝑦𝐺 = 1
- Duration increase for 𝐼 when 𝐶 and 𝐺 selected: 𝑤𝐶𝐺 ≥ 𝑦𝐶 + 𝑦𝐺 − 1 𝑡𝐼 ≥ 𝑡𝐹 + 4 + 2𝑤𝐶𝐺 𝑡𝐼 ≥

 𝑡𝐺 + 4 + 2𝑤𝐶𝐺

This formulation emphasizes the time-based aspects while maintaining the logical requirements of
task selection and interaction. It provides a clear structure that can be extended to handle additional
practical considerations like resource constraints.

40 MeMoCO Simple (for real)

Written by Gabriel R.

3.13 OTHER MODELS: ROUTER COMMUNICATION NETWORK

Sets

- 𝑁: set of routers (nodes)
- 𝐴: set of possible connections between routers (arcs)
- 𝐾: set of commodities, where each 𝑘 ∈ 𝐾 represents a traffic demand from 𝑜(𝑘) to 𝑑(𝑘)

Parameters

- 𝑟(𝑘): traffic demand for commodity 𝑘 ∈ 𝐾
- 𝑢ᵢⱼ: capacity of arc (𝑖, 𝑗) ∈ 𝐴
- 𝑐ᵢⱼ: unit cost for flow on arc (𝑖, 𝑗) ∈ 𝐴
- 𝑏ᵏᵢ: node balance for commodity 𝑘 at node 𝑖, where:

o 𝑏𝑖
𝑘 = {

−𝑟(𝑘), 𝑖𝑓 𝑖 = 𝑜(𝑘)

+𝑟(𝑘), 𝑖𝑓 𝑖 = 𝑑(𝑘)

Variables

- 𝑥ᵏᵢⱼ ≥ 0: flow of commodity 𝑘 on arc (𝑖, 𝑗) ∈ 𝐴

Objective Function

𝑚𝑖𝑛 𝛴(𝑖,𝑗)∈𝐴,𝛴𝑘∈𝐾 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

Constraints

- Flow Conservation: For each node 𝑖 ∈ 𝑁 and commodity 𝑘 ∈ 𝐾 → ∑ 𝑥𝑖𝑗
𝑘 − ∑ 𝑥𝑗𝑖

𝑘 = 𝑏𝑖
𝑘

(𝑗,𝑖)∈𝐴𝑖,𝑗∈𝐴

- Capacity Constraints: For each arc (𝑖, 𝑗) ∈ 𝐴 → ∑ 𝑥𝑖𝑗
𝑘 ≤ 𝑢𝑖𝑗𝑘∈𝐾

- Non-negativity: For each arc (𝑖, 𝑗) ∈ 𝐴 and commodity 𝑘 ∈ 𝐾 → 𝑥𝑖𝑗
𝑘 ≥ 0

41 MeMoCO Simple (for real)

Written by Gabriel R.

4 METAHEURISTICS (3)

Let’s start by considering a different example: a flash game, used to assign surgical operations,
according to the availability of surgery rooms (which are three); each day of the week has grey zones,
which is the actual time available for that room and that day. We are tasked to solve this problem,
considering the priority is by color (red: most urgent, then orange, yellow, green, blue, white) – doing
as much operations as possible.

Let’s try to first think about strategies and then write the actual algorithms – given the optimization
problem, we find the most similar problem, creating a mathematical model. For example, we are
going to look out for papers, keeping out for the actual content and where their publications come
from.

- For example, a good paper to use here would be “Solving surgical cases assignment problem
by a branch-and-price approach”, which having a read seems the most similar to this problem

- We also see the paper implementation of the modeling schema (below) thought to be correct
and then the professor implementation (next page)

42 MeMoCO Simple (for real)

Written by Gabriel R.

Then, from here, a practical implementation has to come out, for example this one in CPLEX:

Coming back to our problem, we are trying to use something which can optimize the decisions, which
will become useful later for the actual definition of this chapter:

- For example, let’s try to write an algorithm to have priorities assigned according to how they
possibly fit, one by one

o This may not work, but computationally it’s fast
- Another idea would be to try to assign the priorities randomly, given it takes basically no time,

and then getting all of the solution
o Randomness can come into play, trying to design some kind of fitting algorithms
o For example (remember Operating Systems? – worst fit/first fit/best fit – see here)

https://medium.com/@khanzadaaneeda/contiguous-memory-allocation-first-fit-best-fit-and-worst-fit-734fd6f78ab

43 MeMoCO Simple (for real)

Written by Gabriel R.

A solution might be found by applying the best fit algorithm:

Another idea is perturbing the system a bit in order to obtain better and better solutions, adopting this
as a rule to refine and improve progressively what we get as output, once we do not need to find the
optimal solution.

4.1 CLASSIFICATION OF METHODS

We have a class of algorithms not trying to guarantee the solution optimality designed to provide
“good” solutions, not the “optimal” ones (which required further overhead considering parts in the
computation not needed to find the optimal solutions). So:

- Exact methods: devised to provide a provably optimal solution
- Heuristic methods: provides “good” solution with no optimality guarantee

Consider also:

- Sometimes the exact solution is mandatory
- Always try to devise an exact approach first!

When do we use heuristics?

- To formulate an exact model is unpractical or impossible
- Need for just “good” solution using “reasonable” resources”

o Limited amount of time to provide a solution (running time)
▪ E.g., quick scenario evaluation in interactive Decision Support Systems
▪ E.g., real time system/NP-Hard problems

o Limited amount of computational resources (memory, CPUs, hardware)
o Limited amount of time to develop an effective solution

▪ E.g., off-the-shelf solvers cannot effectively solve an available formulation)
o Limited amount of economic resources to develop a solution algorithm

▪ E.g., costs for analysers and developers) or run it (e.g., costs for solver
licenses, new hw etc.)

44 MeMoCO Simple (for real)

Written by Gabriel R.

- Just estimates of the problem parameters are available (and we do not want to deal with
uncertainty using robust or stochastic optimization...)

Warning: NP-hard problem ≠ heuristics!

In some cases it’s better to spend resources in order to get to better data or create models in order
complex problems – so, mathematical models make their jobs in order to take better solutions.

The following is one (among many) possible classifications for the problems:

- Specific heuristics
o Exploits unique features of the problem at hand
o May encode the current “manual” solution, good practice
o May be “the first reasonable algorithm that come to our mind”

- General heuristic approaches (algorithmic “templates”)

o Constructive heuristics
o Simplified exact procedures
o Meta-heuristics (algorithmic improvement schemes)

▪ They define components and interactions so to find good solutions
o Approximation algorithms

▪ Approximation guarantee to have a specific distance factor from a solution
o Hyper-heuristics

▪ They operate at the boundary between Operations Research and Artificial
Intelligence so to find solution linking pieces of other algorithms

Some papers of reference here (to give a better representation):

- C. Blum and A. Roli, “Metaheuristics in Combinatorial Optimization: Overview and Conceptual
Comparison”, ACM Computer Surveys 35:3, 2003 (p. 268-308) K. Sorensen – here

- “Metaheuristics – the metaphor exposed”, International Transactions in Operational Research
(22), 2015 (p. 3-18) – here

Let’s go into deeper detail of the general approaches.

4.2 CONSTRUCTIVE HEURISTICS

These heuristics look for a solution from the empty one, going to iteratively add elements to it, trying to
limit back-tracking. The criterion by which the element to be added is chosen is called the expansion
criterion. The simplest heuristic is the greedy heuristic, which at each step chooses the element that
is best at that time. In particular:

- Build a solution only using input data incrementally selecting a subset of alternatives
o Start from an empty solution, adding iteratively elements with no backtracking

- Expansion criterion (no backtracking)
o Make local optimal choices at each step, which may not lead to globally optimal

solutions

https://dl.acm.org/doi/10.1145/937503.937505
https://www.dei.unipd.it/~fisch/ricop/OR2/Metaheuristics-the%20metaphor%20exposed.pdf

45 MeMoCO Simple (for real)

Written by Gabriel R.

4.3 GREEDY ALGORITHMS

Between constructive heuristics, let’s consider first the greedy algorithms:

They adopt local expansion criterion, because the choice is made considering the best for the current
state of the solution.

The generic scheme is:

1. Initialize solution 𝑆.

2. For each choice to be made:

a) Make the best choice for the current context, considering the

constraints of the problem.

One needs a criterion to add the most feasible element at a time, using a greedy (myopic) vision given
on what we have at the moment, using a strongly local criterion: things will be added iteratively
according to the need, applying sorting rules according to dispatching rules.

- They are particularly easy to implement
- Time of computation is reduced, and they are used in blocks for more complex algorithms

In some cases, greedy algorithms exploit an ordering of elements (dispatching rule): the elements that
define the solution are considered in that order and eventually inserted into the solution.

- Generally, the sorting criteria used involve associating each choice with a “score” that
indicates the goodness of the move, trying to reward at each iteration the move that appears
to be the most promising

- The score information can be computed once and for all at the beginning of execution based
on the input data (pre-sorting)

- Often, however, the same heuristic algorithm provides better results if the element sorting
criterion is dynamically updated to consider the choices made previously; of course, the
continuous updating of element scores will result in an increase in the computation time
required by the algorithm itself

To try to get different, and possibly better, solutions using the same procedure, one can iterate the
algorithm using a different sorting each time, obtained by a randomization of the dispatching rule.

- For example, the score could be corrected with a random component, so as to have the
possibility of choosing, at each step, not the best element, but a “good enough” element: in
this way one could make the algorithm less myopic and save some elements for later steps,
when the choices become more critical. Or, at each step, one could consider the random
choice among the best 𝑛 residual elements

Generally, greedy algorithms are of the primal type, that is, they make choices that always respect all
constraints (starting from an empty solution). There are, however, also dual versions of such
algorithms, applied to problems for which it may be difficult to determine a feasible solution: these
start from unfeasible solutions and try to construct a feasible solution, making choices aimed at
reducing the degree of unfeasibility, trying not to make the value of the solution much worse.

46 MeMoCO Simple (for real)

Written by Gabriel R.

4.4 EXACT METHOD ALGORITHMS AND SIMPLIFICATION OF EXACT PROCEDURES

Other things to report:

- Exact method algorithms exploit the LP model of the problem and use continuous relaxation in
order to define score and expand the solution, so to find the best solution at each expansion
iteration, when fixed the element variables

o Generally, the computational time is greater than greedy algorithms, with greater
solution quality given they are globally optimal

- Simplification of exact procedures, taking decisions with greedy criteria but using an exact
schema, for example after a certain time limit of a number of nodes

o A variant seen here is the beam search

We want to start from “simple” examples, like the knapsack problem. An example of this is the
classical knapsack algorithm (KP 0/1), in you need to pack a set of items, with given values and sizes
(such as weights or volumes), into a container with a maximum capacity (aka “can we put it or not?”).

Greedy rules would be:

- Selecting the smallest weight
- Selecting the higher profits

An algorithm would be this one – privileging higher-profit and lower-weighted values:

The order is based on a score assigned to each element, which is static (dispatching rule). The logic of
the algorithm is this one:

1. Sort items in descending order of
𝑝ⱼ

𝑤ⱼ

2. Initialize: 𝑆 ∶= ∅, 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∶= 𝑊

3. For each item 𝑗 in sorted order:

 if 𝑤ⱼ ≤ 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 then

 𝑆 ∶= 𝑆 ∪ {𝑗}

 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∶= 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑤ⱼ

47 MeMoCO Simple (for real)

Written by Gabriel R.

Note how the expansion criterion is static (the ratio) and can be evaluated once and for all at the
beginning of the algorithm.

Now, we are exploring the Set Covering Problem (SCP), which selects a minimum cost combination of
subsets whose union equals 𝑀 (covers all elements in 𝑀). Here, the solution is built with a subset at a
time.

In the set covering problem, a subset is “good” if it has low cost and covers many elements (among
those yet uncovered). Thus, the basic idea of the greedy algorithm is to compute the score of each
subset not yet included in the solution as a function of cost and the number of additional elements
covered.

We select subsets between M and calligraphic M (subset) so to select the best order (no matter if
ascending or descending):

The score assigned to a subset not only depends on the size, but it strictly depends on the iterations.
This is the greedy algorithm for KP 0/1:

Note how, in this case, score evaluation is dynamic, being related not only to the subset under
consideration, but also to the choices previously made according to the expansion criterion, which
changes the number of additional elements covered.

48 MeMoCO Simple (for real)

Written by Gabriel R.

Question: Is it better to have a static/dynamic dispatching rule?

Answer: The choice between static and dynamic dispatching rules is a tradeoff between efficiency and
solution quality.

- Static rules are evaluated once upfront, making them faster and simpler but less adaptive
- Dynamic rules update before each choice, providing better solutions by considering the partial

solution state, but require more computation time
- Choose static for speed and simplicity, or dynamic for better quality when computational

resources allow for this choice
- The best choice ultimately depends on your specific requirements for solution quality versus

computational efficiency

In general:

- Better to use dynamic rules – they are efficient, but they may be costly from an efficiency point
of view, since it exploits partial solutions (up to that point)

- We have no current view of what will happen in the future – can we build a “look-ahead”
dispatching rule?

One way would be to integrate into heuristics some exact methods. For example, let’s consider a
greedy algorithm for the SCP through an exact method, where we use continuous relaxation:

The key idea is about how we use LP relaxation to score/choose the next element:

1. Instead of forcing 𝑥𝑗 to be binary (0 or 1), we relax it to be continuous (0 ≤ 𝑥ⱼ ≤ 1). This makes
the problem much easier and faster to solve

2. When we solve this relaxed LP:

- Already selected elements (in set 𝑆) have 𝑥ⱼ = 1 fixed
- All other variables can take any value between 0 and 1
- This gives us fractional values for unselected elements

3. The scoring strategy:

- The LP solution 𝑥∗ gives us fractional values for each unselected element
- We choose the element with highest fractional value (𝑎𝑟𝑔𝑚𝑎𝑥 𝑥𝑗

∗)

49 MeMoCO Simple (for real)

Written by Gabriel R.

- This value indicates how "important" the LP solver thinks that element is for an optimal
solution

4. The intuition:

- Elements with higher 𝑥∗ values are considered more valuable by the LP solver
- These values consider the global problem structure
- It's like the LP is giving us a hint about which elements would be good to select next

Even with simple constructive heuristics, understanding sorting and everything is important in fact.
This last algorithm, most likely and in general instance conditions, works better.

An idea would be integrating exact solution methods inside of heuristics, specifically:

- Expansion criterion based on solving a sub-problem to optimality (once or at each expansion)
- Example: best (locally optimal!) element to add by MILP
- Example: locally good element to add by LP relaxation of MILP
- Normally longer running times but better final solution
- “Less greedy”: solving the sub-problem involves all (remaining) decisions variables (global

optimality)

Remark: having a mathematical model is useful, even if the model does not directly solve the
problem.

We talk about random constructive heuristics algorithms:

The randomic choice is not totally random but may be useful in order to make the computation faster.

50 MeMoCO Simple (for real)

Written by Gabriel R.

An idea can be to simplify exact procedures, for example:

- Run CPLEX on a MILP model for a limited amount of time
- Simplify an enumeration scheme

o Select only a limited subset of alternatives, e.g., Beam Search

A constructive simplification might be the following one, considering a search tree for the knapsack
problem, considering 6 items, doing binary branching (𝑏 = 2): at each node, we branch by setting a
variable to 0 or 1. This is a way to implement a bruteforce approach.

The tree exploration works level by level:

1. At Level 1: branches on 𝑥1 (0 − 1)
2. At Level 2: branches on 𝑥2 (0 − 1)
3. Each subsequent level fixes another variable

At each level, only the 𝑘 = 2 best nodes are kept for further exploration, based on their evaluation
values. This reduces the search space compared to full enumeration while potentially maintaining
satisfactory solution quality.

The following is the complete example (basically, it’s a bruteforce approach with a search tree; “put
Yes or put No”, up to the last level) – with a few items it’s tractable, otherwise it can become
exponential on running time to explore all of the leaves.

A heuristic will try to explore a part of this tree, since otherwise it would be an exponential explosion;
like a beam, we would like to explore a part of this tree, exploring at a time the best nodes, evaluating
the nodes and selecting only one part, so to stabilize the nodes chosen (constants × size of the
problem).

51 MeMoCO Simple (for real)

Written by Gabriel R.

At each level, the heuristic might select nodes to be developed or not – the boxed value 48 at the
bottom right indicates a feasible solution was found on that branch. Other branches were either
pruned (N.A.) or had worse evaluations.

With this algorithm, we consider each position and examine the 𝑁 sequences so far, so to consider all
of the probabilities and combinations of the positions – this is known to be a fast algorithm, since it
does a systematic expansion of the most promising nodes within a constrained set.

52 MeMoCO Simple (for real)

Written by Gabriel R.

This variant with higher guarantees of finding good solutions is known as beam search, consisting of
simplifying the branch-and-bound algorithm through a partial breadth-first visit to the tree. For each
node, all 𝑏 potential children nodes are generated but, for each level, at most 𝑘 child nodes are
developed (i.e., branched on) (where 𝑘 is a parameter to be calibrated according to the computational
time available).

- The choice of the 𝑘 subproblems to be developed is usually made by associating with each
potential child node a prior assessment of the goodness of the solutions contained in the
corresponding subtree (e.g., but not limited to, the bound, or a quick assessment of a possible
solution of the subtree through a greedy completion procedure, or their weighted sum etc.)
and taking the 𝑘 most promising child nodes of the current level current one

- In this way combinatorial explosion is avoided: at each level k nodes will be kept (at most) and
the branch-and-bound tree is reduced to a bundle (=beam) of 𝑛 − 𝑘 nodes (if n is the number
of levels in the tree) thus guaranteeing polynomial complexity, if polynomial is the procedure
for evaluating each node. Height of the tree remains infact polynomial

Note that if 𝑛 is the number of levels in the tree (related to the size of the problem), 𝑏 is the number of
child nodes of the generic node and 𝑘 the size of the bundle will be evaluated 𝑂(𝑛 ∗ 𝑘 ∗ 𝑏) nodes.
Eventually there will be at most 𝑘 leaf nodes corresponding to solutions from which the best one is
chosen.

- From the above formula, fixing 𝑘, the number of nodes is known, and being able to estimate
the time required to perform the evaluation of a node, one can predetermine the time total
execution time of a beam search

- Or, if the maximum amount of time available is known, it is possible to size 𝑘 to the maximum
value that will allow the search for all nodes to be completed in the predetermined time

In its basic form, the beam search technique does not involve backtracking (it is not possible to
backtrack once choices of nodes to be developed have been made): for this reason, it has been
included in this section on constructive heuristics, although the fact that the various components
have to be defined specifically for each problem within a well-defined framework makes this
technique comparable to a metaheuristic.

- Indeed, the boundary (as we have already mentioned) is blurred and, for beam search, there
are variants, such as recovery beam search where one handles backtracking, allowing, if one
realizes that some subtree at a certain level is not “promising,” to go back to an earlier level

With this method, nodes which are computed are known in advance.

The example shows a knapsack problem with:

- 𝑛 = 6 variables (tree levels)
- 𝑏 = 2 branches per node (binary variables)
- 𝑘 = 2 best nodes kept per level
- Node scores are based on relaxation values
- Infeasible/dominated solutions marked as N.A.
- Solution found at bottom-right with value 48

https://en.wikipedia.org/wiki/Branch_and_bound

53 MeMoCO Simple (for real)

Written by Gabriel R.

The variant "recovery beam search" adds limited backtracking capability to potentially improve
solution quality while maintaining reasonable computational effort.

4.5 NEIGHBORHOOD AND LOCAL SEARCH

How to improve a solution?

- In continuous optimization: use gradient (to see the idea, look here)
o Done to compute the exact direction of improvement
o Following smooth path to the optimum, using derivatives (directions)
o This is not directly applicable because of the nature of the objective function

- In combinatorial optimization: explore nearby solutions ("neighborhood")
o Moves through discrete “jumps”, checking nearby solutions

This image illustrates the concept of gradient vs. neighborhood search in optimization:

The grid lines represent a discrete solution space 𝑋, while the curved lines show continuous paths
that would be followed by gradient-based methods. Let’s explain the key elements of this visual
example:

1. Red dot: Current solution 𝑠
2. Grid intersections: Feasible discrete solutions
3. Curved green lines: Continuous optimization paths (gradient)
4. Blue grid: Discrete solution space where neighborhood search operates

The image emphasizes that while continuous optimization can follow smooth paths (green curves),
combinatorial optimization must "jump" between discrete points on the grid through neighborhood
moves.

- The neighborhood 𝑁(𝑠) of the red point would be nearby grid intersections, typically those
reachable through single moves in the discrete space, rather than following the continuous
curves

- This visualizes why gradient methods don't work for combinatorial problems – we must explore
discrete neighbors rather than follow continuous improvement directions

The basic idea of neighborhood search is to define an initial solution (current solution) and try to
improve it by exploring an (appropriately defined) neighborhood of this solution. If the optimization on
the current solution's surroundings produces an improving solution the procedure is repeated
starting, as the current solution, from the newly determined solution.

https://medium.com/intuition/gentle-introduction-of-continuous-optimization-for-machine-learning-d56e26278eec

54 MeMoCO Simple (for real)

Written by Gabriel R.

Let’s give a more formal definition:

Remark:

- 𝑁(𝑠) obtained by systematically applying slight changes to 𝑠
- A change is also called move: we from from 𝑠 to a neighbor solution
- The move also identifies the applied rule, i.e., the neighborhood function

Consider the problem applied here – given:

- Set of items 𝑖 with profits 𝑝ᵢ and weights 𝑤ᵢ
- Knapsack capacity (weight) 𝑊 = 20
- Items: 𝑎(3,4), 𝑏(4,5), 𝑐(5,4), 𝑑(3,3), 𝑒(8,9), 𝑓(4,7) where (𝑝𝑖, 𝑤𝑖) represents (profit, weight)

First Neighborhood 𝑁(𝑠)

Current solution 𝑠 = {𝑎, 𝑏, 𝑑} with 𝑜𝑏𝑗(𝑠) = 10

𝑁(𝑠) = {𝑡 ⊆ 𝑋 | 𝑡 = 𝑠 + 𝑖, 𝑖 ∈ 𝑋 ∖ 𝑠 𝑜𝑟 𝑡 = 𝑠 − 𝑖, 𝑖 ∈ 𝑠 }

where:

- 𝑋 is set of all feasible solutions
- 𝑠 + 𝑖 means adding item 𝑖 to solution 𝑠
- 𝑠 − 𝑖 means removing item 𝑖 from solution 𝑠

Neighbors:

𝑡₁ = {𝑏, 𝑑} 𝑜𝑏𝑗(𝑡₁) = 7 [𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑎]

𝑡₂ = {𝑎, 𝑑} 𝑜𝑏𝑗(𝑡₂) = 6 [𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑏]

𝑡₃ = {𝑎, 𝑏} 𝑜𝑏𝑗(𝑡₃) = 7 [𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑑]

𝑡₄ = {𝑎, 𝑏, 𝑐, 𝑑} 𝑜𝑏𝑗(𝑡₄) = 15 [𝑎𝑑𝑑𝑒𝑑 𝑐]

𝑡₅ = {𝑎, 𝑏, 𝑑, 𝑒} 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 [𝑎𝑑𝑑𝑒𝑑 𝑒]

𝑡6 = {𝑎, 𝑏, 𝑑, 𝑓} 𝑜𝑏𝑗(𝑡₆) = 14 [𝑎𝑑𝑑𝑒𝑑 𝑓]

55 MeMoCO Simple (for real)

Written by Gabriel R.

Second Neighborhood 𝑁′(𝑠):

𝑁′(𝑠) = {𝑡 ⊆ 𝑋 | 𝑡 = 𝑠 + 𝑖 − 𝑗, 𝑖 ∈ 𝑋, 𝑗 ∈ 𝑠}

where 𝑠 + 𝑖 − 𝑗 means swapping item 𝑗 in 𝑠 with item 𝑖 not in 𝑠

Neighbors:

𝑡₁ = {𝑐, 𝑏, 𝑑} 𝑜𝑏𝑗(𝑡₁) = 12 [𝑠𝑤𝑎𝑝𝑝𝑒𝑑 𝑎 → 𝑐]

𝑡₂ = {𝑒, 𝑏, 𝑑} 𝑜𝑏𝑗(𝑡₂) = 15 [𝑠𝑤𝑎𝑝𝑝𝑒𝑑 𝑎 → 𝑒]

𝑡₃ = {𝑓, 𝑏, 𝑑} 𝑜𝑏𝑗(𝑡₃) = 11 [𝑠𝑤𝑎𝑝𝑝𝑒𝑑 𝑎 → 𝑓]

𝑡₄ = {𝑎, 𝑐, 𝑑} 𝑜𝑏𝑗(₄) = 11 [𝑠𝑤𝑎𝑝𝑝𝑒𝑑 𝑏 → 𝑐]

𝑡₅ = {𝑎, 𝑒, 𝑑} 𝑜𝑏𝑗(𝑡₅) = 14 [𝑠𝑤𝑎𝑝𝑝𝑒𝑑 𝑏 → 𝑒]

𝑡₆ = {𝑎, 𝑓, 𝑑} 𝑜𝑏𝑗(𝑡₆) = 10 [𝑠𝑤𝑎𝑝𝑝𝑒𝑑 𝑏 → 𝑓]

𝑡₇ = {𝑎, 𝑏, 𝑐} 𝑜𝑏𝑗(𝑡₇) = 12 [𝑠𝑤𝑎𝑝𝑝𝑒𝑑 𝑑 → 𝑐]

𝑡₈ = {𝑎, 𝑏, 𝑒} 𝑜𝑏𝑗(𝑡₈) = 15 [𝑠𝑤𝑎𝑝𝑝𝑒𝑑 𝑑 → 𝑒]

𝑡₉ = {𝑎, 𝑏, 𝑓} 𝑜𝑏𝑗(𝑡₉) = 11 [𝑠𝑤𝑎𝑝𝑝𝑒𝑑 𝑑 → 𝑓]

The basic idea of the meta-heuristic known as neighborhood search is the following: start from an
initial solution (current solution) 𝑥 and try to improve it by exploring a suitable neighbourhood of 𝑥. If
the neighbourhood contains a solution better than 𝑥, then iterate the process considering 𝑥′ as the
new current solution.

The simplest version of the neighbourhood search is the local search (LS): the algorithm stops when
the neighbourhood of the current solution contains no improving solutions, so that the current
solution is a local optimum.

56 MeMoCO Simple (for real)

Written by Gabriel R.

4.6 LOCAL SEARCH SCHEME

 The basic Local Search (LS) scheme is the following:

The scheme is extremely simple and general. To obtain an algorithm for a specific problem the
following components should be specialized:

- A method to find an initial solution
- A solution representation (model/representation), which is the base for the following elements

(which is a formulation to be used inside of the implementation)
- The application that, starting from a solution, generates the neighbourhood (moves)
- The function that evaluates solutions
- A neighbourhood exploration strategy

The "hidden components" in Local Search (LS) are crucial because they significantly impact the
algorithm's effectiveness. Each is important because of many factors:

- Quality affects the starting point of search
- Can influence final solution quality
- Trade-off between quick random start vs. good heuristic solution
- Affects diversification (multiple random starts) vs. intensification (good starts)

This is visible by the following:

57 MeMoCO Simple (for real)

Written by Gabriel R.

4.7 INITIAL SOLUTION AND SOLUTION REPRESENTATION

There are different approaches to generating initial solutions for Local Search algorithms and their
implications:

- Random choice of a solution
- From current practice – using existing solutions from real-world
- (Fast) heuristics
- Randomized heuristics
- No theoretical preference: better initial solutions may lead to worst local optima

o Starting with a high-quality solution doesn't guarantee finding the global optimum
o Could get stuck in local optima near the starting point
o May miss better solutions in other regions of the solution space

- Random or randomized + multistart
o Better exploration of solution space – different starting solutions
o Increased chance of finding global optimum
o Helps avoid getting stuck in specific regions

The easiest way to get a starting solution is to generate one randomly. Or if the problem is derived from
a real case, there may be a currently used solution that can be used as a starting point.

Another idea is to start with a good solution obtained by fast heuristics.

- There is no theoretically better choice anyway, so there is a trade-off between the time
invested in finding a good starting solution or the time invested in finding the optimum.

- Of course, there is always the risk of getting stuck in a local maximum
- If a randomly generated starting solution is chosen, it is possible to repeat the local search

several times in order to find multiple local optimum solutions, in the hope that one of them
will be better than the others or a global optimum solution

The solution representation encodes the features of the solutions as to provide the “concrete”
support for the operations that allow us exploring the solution space. As we will see, different solution
representations may be adopted for the same problem, which influences the design of the remaining
LS elements.

For the Knapsack Problem (KP 0/1), possible
representations include:

1. List of loaded items
2. Characteristic binary vector indicating selected

items
3. Ordered sequence of items

Decoding may be needed to translate the representation into an actual solution. For KP 0/1:

- List and vector representations have immediate decoding
- For ordered sequences, items are loaded in the given order until the knapsack is full

58 MeMoCO Simple (for real)

Written by Gabriel R.

The way in which the solution is represented is important because it affects the definition of the
neighborhood and the shape of the search space.

- By representing the solution we do not mean using a vector rather than a list, but at a more
abstract level

- For example, for the backpack problem, it is possible to represent the solution with a binary
vector, where a 1 indicates that the item was placed in the backpack, or as a stack of objects
representing the various items

- Depending on the encoding, decoding may also be necessary to obtain a result that people
can understand (e.g., pop/push operations for K/P 0-1)

4.8 NEIGHBORHOOD REPRESENTATION: STARTING SOLUTION AND REPRESENTATION

The neighborhood function 𝑁 defines how to perturb a solution 𝑥 to generate its set of neighbor
solutions 𝑁(𝑥).

For example, adding one item in the backpack or removing another. Typically, these are slight
changes, so the size of the neighborhood is small to make it quick to evaluate.

- However, there is a trade-off, because as the neighborhood size increases the probability of
converging to a local optimum decreases, but the complexity/time for generation/evaluation
increases

- Therefore, the complexity of the evaluation algorithm must also be considered, because it
must be run on all solutions in the neighborhood

There are key properties for the neighborhood to be considered in its design:

- Neighbourhood size: number of neighbor solutions
- Evaluation complexity: time to evaluate one neighbor (incremental is faster)
- Neighbourhood strength: reach good local optima (may depend on convexity of space)

o Good chance of producing excellent local solutions, this is because if you have a
strong neighborhood it is easier to achieve a good solution even from a bad one

- Connection: any solution reachable by a move sequence
o Given two feasible solutions it is always possible to find a sequence of moves that

allows you to move from one solution to the other – done at priori

For KP/0-1, the addition neighborhood is clearly disjointed (reachable solutions are only those that
contain the objects in the starting solution).

The second neighborhood is also disjointed (only solutions with as many objects in the knapsack as
the starting solution are reachable). A connected neighborhood would be one that includes two types
of moves: addition of an object in the knapsack and elimination of an object from the knapsack (note,
however, that, in a local search context, elimination moves would never be selected because they are
non-enhancing).

59 MeMoCO Simple (for real)

Written by Gabriel R.

The following one is an example for the KP 0-1:

For the KP problem we can use three representations:

- A list with elements included in the backpack
- A Boolean characteristic vector with as many values as there are total elements

(conventionally n). A 1 indicates that the element is in the backpack (0 otherwise)
- A stack with the ordered sequence of element elements

Considering the addition of an element and the swap as moves, we do not get connected
neighborhoods, because it may be that to move from one solution to a better one we need to make a
not-so-great move.

But there is also a practical problem, implementing insertion/swap in a list or vector is simple, but on
the stack (or ordered list), the implementation may be more complex and in some cases may not be
possible.

The way the neighbourhood is devised and designed strongly depends on the way solutions are
represented – solution representation is important!

- All the moves we have previously described for KP-0/1 comes from the first representation
(insert or remove are list operations). The same moves can be easily adapted to the second
representation (characteristic vector): flipping a 0 to 1 (insertion), flipping a 1 to 0 (removing),
swapping a 0 and a 1 (pairwise swap)

- The third representation (ordered item list) yield different move definitions, since a neighbour
solution is given by a different order. A move may be swapping the position of two items in the
sequence: for example, if 𝑛 = 7 and the centre solution is 1 − 2 − 3 − 4 − 5 − 6 − 7,
neighbour solutions are 1 − 6 − 3 − 4 − 5 − 2 − 7 (swap 2 and 6) or 5 − 2 − 3 − 4 −

 1 − 6 − 7 (swap 1 and 5)

- The size of this neighbourhood is 𝑂(𝑛2) and it is connected (with respect to maximal solutions,
that is, the ones where no further items can be included preserving feasibility)

60 MeMoCO Simple (for real)

Written by Gabriel R.

That is summarized by the following image:

The insertion neighborhood is not connected, as it only reaches solutions with more items than the
center. The swap neighborhood is also not connected, as the number of items cannot change.

A connected neighborhood is insertion+removing, as any subset can be reached by adding/removing
items. However, removing moves would not improve the objective in a straightforward LS
implementation (see solution evaluation).

4.9 COMPLEXITY AND EVALUATION FUNCTION OF SOLUTIONS

Another important aspect to consider in the design of the neighborhood is related to the efficiency of
its exploration, that is, the evaluation of the solutions that are part of it.

- In fact, one of the factors that determine the success of techniques based on neighborhood
search is the ability to evaluate many solutions very quickly

- The time to explore a neighborhood depends not only, as we have seen, on the size, but also
on the computational complexity of evaluating a single neighborhood

In this regard, it is always important to consider the possibility of incremental evaluation that takes
advantage of the information from the neighborhood center.

- The possibility of efficient incremental evaluation is related to the degree of perturbation
introduced by a move: for this reason, there is a tendency to favor neighborhoods determined
by simple moves (often less strong but quick to evaluate), as opposed to moves that result in
significant perturbations (neighborhoods that are stronger but, in addition to having larger
sizes, require less efficient evaluation)

- In total, neighborhood complexity is given by the product of neighborhood size times the
evaluation complexity of each neighbor

61 MeMoCO Simple (for real)

Written by Gabriel R.

The solution evaluation function is used to compare neighbors to the center solution (and between
each other) – normally, the objective function – basically, how “good” they are.

In KP-0/1, the evaluation function may:

4.10 EXPLORING STRATEGIES AND LS APPLICATION TO TSP

The basic LS scheme depicted above makes the search go on if the neighbourhood of the current
solution contains an improving solution. The choice of which improving neighbour solution to select is
not unique and depends on the exploration strategy. The common alternatives for exploration are:

- First improvement: as soon as the first improving neighbour is generated, it is selected as the
next current solution

o Notice that the final results (e.g., the local minimum found, or the running times for a
single move) depend on the order in which neighbour solutions are explored

o In order to reduce running times, we may adopt a heuristic order, to give priorities to
the moves that are more likely to yield an improvement

o A random order may be used instead, so that different repetitions of the local search
(starting from the same initial solution) may lead to different local optima

- Granularization: apply a filter (deterministic rules, a pre-trained classifier) to exclude part of
the neighbours (machine learning)

- Steepest descent or best improvement: all the neighbourhood is explored and evaluated, and
the next move is determined by the best one

Alternative techniques are possible, some of which, to incorporate randomness into the algorithm,
determine the 𝑘 neighborhood solutions that guarantee the highest improvements and randomly
choose one of these solutions as the next current solution.

- Repeated execution of such an implementation of local search allows finding excellent
different locales from which the best one is chosen

- Another possibility is to store some of the best unvisited neighbors and use them, at the end of
the first descent, as the initial solutions of a new local search that could lead to excellent
different locales

62 MeMoCO Simple (for real)

Written by Gabriel R.

Consider a classical problem: the Traveling Salesman Problem (TSP), which considers an Hamiltonian
cycle – cycle that visits each vertex exactly once. Up to a reasonable size, solving the problem is
feasible, but sometimes we need approximate solutions to get heuristics and solve a specific problem
(since it is NP-Hard, otherwise, algorithms have an exponential complexity).

TSP is an NP-hard problem, and as early as 100 nodes, CPLEX is struggling to find a solution optimal
with the exact approach (note: important for Assignment 1!)

In addition to starting from a random solution, obtained by considering a random sequence of visiting
graph nodes, there are several constructive heuristics for TSP, among which we mention the
following.

The Nearest Neighbor (NN) (also, Nearest Node in slides) heuristic provides a straightforward way to
construct an initial solution:

- Start from a random node 𝑖0
- Iteratively select the closest unvisited node until all nodes are visited
- Complete the cycle by returning to 𝑖0
- Complexity is 𝑂(𝑛²)

The NN heuristic is:

- Simple to implement but not amazingly effective
- Greedy in nature, which can be problematic since the last choices become critical
- Can be improved by:

o Running multiple times with different starting nodes 𝑖0
o Randomizing the node selection in Step 2

63 MeMoCO Simple (for real)

Written by Gabriel R.

After the initial solution, we improve things by heuristics and local search:

The algorithm is simple and of low complexity (improvable with particular data structures) but has
mediocre performance.

- In particular, the loop degrades as it is constructed, since the initial choices tend to leave out
the most disadvantaged nodes, not considering that one must return to the starting node

- To try to improve performance, with still poor effects, or to obtain different starting solutions
for the local search, one could run the algorithm n times, starting from the 𝑛 different nodes in
the graph (choosing 𝑖0 at step 1); or one could randomize the choice of the nearest node at
each step (choosing, at step 2 randomly among the 𝑘 nodes closest to 𝑖)

The complexity increases as long as we continue augmenting the number of nodes, creating larger
instances of the problem – nevertheless, extremely fast and good idea for an initial solution.

The use of Local Search for TSP is justified because:

- TSP is NP-Hard
- Exact approaches exist but are not suitable for:

o Large instances
o Small running time requirements

- LS provides a good trade-off between solution quality and computational effort

64 MeMoCO Simple (for real)

Written by Gabriel R.

Another heuristic is to Best Insertion: find two closest nodes and then calculate the insertion cost
between each consecutive pair, choosing the best inserting it in the best position – insertion
algorithms add new points between existing points on a tour as it grows:

To consider that the path must close, this heuristic starts from a loop of length two and inserts, at
each step, a node into the cycle, with an expansion criterion that selects the node nearest to/farther
away from the cycle. We first start on the Nearest Insertion.

The initial cycle is obtained by selecting the 𝑖 nodes 𝑖 and 𝑗 such that 𝑐𝑖𝑗 is the minimum/maximum:
the initial cost is then 𝑐𝑖𝑗 + 𝑐𝑗𝑖. At each iteration, if 𝐶 is the set of nodes in the current cycle, we select
the node 𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘∈𝑉∖𝐶{𝑐𝑘,𝑗: 𝑗 ∈ 𝐶}.

The Farthest Insertion works better (keeping the complexity to circa 𝑂(𝑛3) since the unlucky choices
or the farthest actually are effective (since cycle is balanced and not degraded after latest insertions).
The goal is not to choose the minimum cost; if one gives probability to the farthest nodes and then
construct to make choices starting from safe nodes.

65 MeMoCO Simple (for real)

Written by Gabriel R.

Consider also that we are not talking about Christofides algorithm, which works only from a
theoretical point of view (have a read here if you don’t know). Here, you have no performance
guarantee since this works specifically in the worst case with a complexity of 𝑂(𝑛4). In the worst case

the tour is no longer than 3
2

 the length of the optimum tour (twice the cost of the optimal solution) – so,

both heuristics and exact methods with smaller complexity work better than this one.

Have a look here in case if you are interested in many other heuristics and different representations.

For the TSP representation of the solution, we have separate ways:

- Arc representation: arcs in the solution, e.g., as a binary adjacency matrix, containing the
binary matrix 𝑁 × 𝑁 containing the arcs being traversed (1 if 𝑀(𝑖, 𝑗) is part of the solution)

- Adjacency representation: a vector of 𝑛 elements between 1 and 𝑛 (representing nodes),
𝑣[𝑖] reports the node to be visited after node 𝑖

- Path representation: ordered sequence of the 𝑛 nodes (a solution is a node permutation!)

Each position of the array is devoted to a specific node and in the representation we represent the
sequences and respective position; the disadvantage comes from the fact positions do not represent
information, but the order of visiting. Of course, it’s easy and intuitive, that’s why it is used generally.

A good representation might be using arcs, considering for example the representation here.

Continuing, we will mainly refer to path representation, which corresponds to the most natural way of
representing the TSP solution and, together with adjacency representation, enjoys the property that
any vector of nodes (without repetitions) represents an admissible solution (while, in the first case,
not all matrices represent a tour!). Decoding the path representation is straightforward: just construct
the loop following the order given in the vector.

What is the minimal way to modify the solution (removing/adding arcs), what is the way to rebuild the
solution to construct an Hamiltonian cycle? Rebuild the same graph, removing 𝑋 arcs and add the
corresponding 𝑋 arcs.

- Classically, the neighborhood for the TSP is obtained by exchanging 𝑘 arcs in the solution with
𝑘 arcs not belonging to the solution

- In order to obtain feasible solutions, it is necessary that the arcs in the solution are not
consecutive in the starting cycle; moreover, once the 𝑘 arcs to be eliminated are defined, one
can explicitly define the 𝑘 arcs to be introduced into the solution to form a new cycle

https://alon.kr/posts/christofides
https://stemlounge.com/animated-algorithms-for-the-traveling-salesman-problem/
https://www.cs.princeton.edu/~bwk/btl.mirror/tsp.pdf

66 MeMoCO Simple (for real)

Written by Gabriel R.

- This type of neighborhood is called k-opt, and was introduced by Lin-Kernighan in 1973

The k-opt neighborhood structure for TSP involves:

- Remove 𝑘 edges from current tour
- Reconnect the tour with 𝑘 new edges to form a valid cycle
- Must maintain tour validity

Examples shown:

- 2-opt: Removes 2 edges and reconnects with 2 new edges
- 3-opt: Removes 3 edges and reconnects with 3 new edges

Implementation details:

- For 2-opt: Effectively reverses a subsequence between cut points
- Original: ⟨1,2,3,4,5,6,7,8,1⟩
- After 2-opt: ⟨1,2,6,5,4,3,7,8,1⟩
- After 3-opt: ⟨1,2,7,6,3,4,5,8,1⟩

Properties:

- Neighborhood size: 𝑂(𝑛𝑘)
- 𝑘 = 2 gives superior results for most instances
- 𝑘 = 3 provides marginal improvements
- 𝑘 > 3 rarely worth computational cost
- Consider there at most 6 ways to change and construct Hamiltonian cycles

This forms the basis for effective local search improvements for TSP solutions.

- The k-exchange moves can be defined directly as operations on the vector of path
representation

- For example, the 2-opt neighborhood is obtained by defining any pair (𝑖, 𝑗) of nodes and
reversing the sub-sequence of nodes between 𝑖 and 𝑗 (substring reversal): in the example, 𝑖 =

3, 𝑗 = 6 and the sequence 3, 4, 5, 6 is replaced by 6, 5, 4, 3; another possible neighbor is
obtained for 𝑖 = 3 and 𝑗 = 7, leading to the sequence ⟨1, 2, 7, 6, 5, 4, 3, 8, 1⟩ and so on

67 MeMoCO Simple (for real)

Written by Gabriel R.

For TSP, 2-opt moves involves reversing a substring between two cut points, considering all of the
possible pairs and moves, incrementally evaluating all of the possible combinations of nodes
(constant time, since removing/adding takes the same time) – the same happens for the 3-opt, for
each triplet of non-consecutive arcs.

About the complexity of the evaluation of each neighbor, it is a matter of subtracting from the value of
the central solution the cost of the 𝑘 eliminated arcs and adding the cost of the 𝑘 added arcs, which
can be done in constant time 𝑂(1): we thus have an extremely efficient incremental evaluation, at the
only additional “cost” of storing, for the center of the neighborhood, the value of the solution.

The removal operation takes constant time since we are subtracting from time to time the arcs. What
is the best choice of the parameter “𝑘”?

- 𝑘 = 2: Good balance of improvement vs complexity
- 𝑘 = 3: Moderate additional improvement but higher complexity 𝑂(𝑛³)
- 𝑘 = 4: Minimal improvement for computational cost 𝑂(𝑛⁴)

No specific reason to adopt special choices, since we can simply use objective function (total cycle
cost), with no need for special evaluation functions or penalties/modifications:

- Neighbours evaluated by the objective function (cost of the related cycle) – take first better
solution found

- Steepest descent (or first improvement) – evaluate all neighbors

As implied by the previous arguments, solutions are evaluated with the mere objective function: in
effect, each permutation of nodes is an eligible solution sufficiently differentiated, in terms of cost,
from its other neighbors, and it is not considered useful to introduce penalties or other components.

68 MeMoCO Simple (for real)

Written by Gabriel R.

4.11 NEIGHBORHOOD SEARCH/TRAJECTORY METHODS

Local search is a good trade-off between simplicity and efficiency, but there is a risk that it gets stuck
on a local optimum. A strategy is therefore needed to dodge these excellent ones. Note that if the
function to be optimized is convex, there is no such problem because every local optimum is also
global. Typically this does not occur in optimization problems. Some ideas might be to do random
restarts, change the neighborhood size, randomize exploration, or perform backtracks. But these
ways only allow restarts once embedded.

We have already mentioned implementation tricks that try to escape from the local optimum, among
which we mention, for summary:

- Random Multistart: this is the simplest technique, which consists of repeating the local search
with different initial solutions, randomly generated or with randomized heuristics

- Dynamic Neighborhood Modification (since the definition of local minimum also depends on
the neighborhood): for example, in TSP, we start with a 2-opt neighborhood and, if no
improving 2-opt neighbors are found, we switch to a 3-opt neighborhood

o Advanced techniques such as Variable Neighborhood Descent (VND) or Variable
Neighborhood Search (which are actually much more complex and are outside the
scope of this course) are based on this observation

- Randomize the exploration strategy by randomly choosing among 𝑘 neighboring enhancers
- Introduce backtrack mechanisms, based on the memory of some feasible alternative choices

of neighbors that can be considered later, once a local minimum is reached by other means

An alternative approach is trajectory methods, which continue the exploration of the solution space
even after ending up in a local optimum. This requires admitting moves that lead to a worse solution.
With this strategy there is a risk of ending up in a loop, using an already explored solution.

Accepting non-improving moves can be a way to try to escape the local optimum, in order to avoid
loops. Here are the key strategies for avoiding loops in trajectory-based search:

To avoid this is possible:

- Accept only better solutions
o For example: Hill Climbing

- Randomly explore space without exploiting information about the problem
o For example: Simulated Annealing

- Keeping track of solutions already been encountered, exploiting the problem structure
o For example: Tabu Search

Note that finishing several times on the same solution may be acceptable. However, in this case it is
necessary to avoid choosing the same previously chosen neighbor again.

69 MeMoCO Simple (for real)

Written by Gabriel R.

4.12 TABU SEARCH

Tabu search (TS) (created by Fred Glover in 1989) is a metaheuristic that relies on memory to avoid
cycling by preventing certain "tabu" moves, which happens maintaining a tabu list for forbidden and
allowed solutions, determining how much they will stay forbidden (the already visited solutions).

A Tabu List, a list containing the last 𝑡 solutions visited 𝑇(𝑘) ≔ {𝑥𝑘−1, 𝑥𝑘−2, … , 𝑥𝑘−𝑡}.

- By doing so at iteration 𝑘, cycles of length ≤ 𝑡 are avoided, where 𝑡 is a parameter that needs
to be calibrated. The limitation given by the parameter 𝑡 is there to limit memory consumption
and to make the search on the list faster. Neighborhood generation is now done by a function
𝑁(𝑥, 𝑘) that also takes iteration into account to avoid tabu

- To increase efficiency and take up less space, one may choose to keep track of the moves
made (or some other feature) instead of the solution, because it may be that evaluating the
equality of two solutions is too expensive or because a single solution requires too much
memory

- There is a disadvantage to keeping track of moves, however, because solutions that have not
yet been visited may be excluded (also seeing if a neighbor is in the tabu list)

A simple example can clarify the basic idea of tabu search:

- Suppose we are in a local minimum 𝑥 and 𝑦 ∈ 𝑁(𝑥) is the best neighbor (even if worse than 𝑥)
according to the neighborhood 𝑁 used

- If we agree to move to 𝑦, at the next iteration, an improving solution in the neighborhood 𝑁(𝑦)
will surely be 𝑥 and it is quite likely that 𝑥 is chosen as the next current solution

- This triggers a cycle between 𝑥 and 𝑦, from which one could escape simply by remembering
that 𝑥 is an already visited solution and preventing (making “tabu”) its selection

If we accept non-improving moves, we are in trouble since we might get stuck in a loop at any given
moment! The local optimum can be the attracting point.

We are inside of a discrete space, which represents coordinates like the following:

70 MeMoCO Simple (for real)

Written by Gabriel R.

If we start from 13, we look at the neighbors and we choose 10; the third solution is the minimum with
respect to 10, which is 11 and continuing like that. The complete path is the following one.

It is an innovative idea to accept non-improving moves, but in the local search scheme that we have,
we eventually are going to loop between good solutions. Above, this is represented by the above pink
cycle. Local search has local optimum as point of stopping, but this is too simple; it will loop
somehow, depending on the inputs.

If I store inside of the tabu list all of the solutions visited, it is impossible to loop; at some point the
tabu list length will be so long that it becomes impossible to compare all of the viable solutions.

Let’s consider a second example with the length of the tabu list with length 5, with the following
representation (left is the beginning one, right one deletes a previous node since length of list is 5):

Of course, storing solutions means coming back to those nodes, but the tabu list memorizes them in
some way (not coming back to nodes, but performing the same moves with a different tabu list). The
best solution going on with the walk, the best solution is 3; if all solutions were stored, everything
would have been “tabu”, so keeping a shorter list is definitely useful to perform again the same moves
in an ordered way.

71 MeMoCO Simple (for real)

Written by Gabriel R.

It’s important also to verify the membership of a certain neighbor in the tabu list, which depends from
the length of the list and the complexity of the comparison to check.

- Let us clarify this point by considering the case of the TSP with neighborhood 2-opt: instead of
storing the last 𝑡 Hamiltonian cycles visited, one can store 𝑡 pairs of arcs subject to deletion in
the last selected moves: if we choose to delete the arcs (𝑖, 𝑗) and (ℎ, 𝑙) and, consequently, add
the arcs (𝑖, ℎ) and (𝑗, 𝑙), these arcs will not be exchanged for the next 𝑡 moves. Or one could
decide to make all moves involving nodes 𝑖, 𝑗, ℎ and 𝑙 tabu

- Indeed, in this context, to cycle does not simply mean to return to a certain solution, but to
cyclically retrace a certain trajectory in the search space. Thus, even if one were to return to a
solution already visited, the important thing is to continue on a different path, which is
possible if one inhibits moves (or salient features) recently considered and therefore
contained in the tabu list

For example, in solving the TSP using 2-opt moves, completing what said above (which reverse parts
of the tour):

- Instead of storing complete tours in the Tabu List, we store the pairs of arcs that were added
by recent moves

- This prevents immediately reversing those moves, which would undo progress
- However, if reversing a tabu move would create a tour shorter than any found so far, the

aspiration criterion allows it

Another reason for limiting the memory of visited solutions is that, if one makes many neighbors tabu
(think particularly of the case of prohibition on features of solutions), after a certain number of steps
one risks greatly depleting the “legal” neighborhood, preventing proper exploration of solutions.

- For this reason, the length 𝑡 of the tabu list (called tabu tenure) is a critical parameter that
needs to be sized appropriately:

o Too low = makes the tabu list too short and the risk of cycling remains
o Too high = the tabu list is too long and as seen, there is a risk of constraining the search

too much (losing potentially good neighbors) even though by now one has moved far
enough away from a certain solution or local minimum to make it unlikely to cycle

This is where aspiration criteria come in. They can be defined that if they are met they will surpass the
tabu rule and let the solution visit anyway. For example, as aspiration criteria one can use “the tabu
solution has the best objective function value among all those visited so far”, overruling them.

- They provide a way to override the Tabu List restrictions when a promising solution is found
- The most common aspiration criterion is allowing a tabu move if it leads to a solution better

than the best found so far. This makes intuitive sense – even if a move is tabu, if it leads to the
best solution yet, we should allow it

There are different stopping criteria, since the one used by local search (find improving neighbors) is
not applicable anymore. It’s a combination of (all parameters with * should be calibrated):

- Maximum number of iterations, or maximum time limit *
- Maximum number of NOT (locally or globally) IMPROVING iterations *
- A solution is found satisfying an optimality or “acceptability” certificate, if available...

72 MeMoCO Simple (for real)

Written by Gabriel R.

- Empty neighbourhood and no overruling (no aspiration criteria to apply)
o Perhaps 𝑡 is too long (too high as parameter – length is the list size)
o Perhaps visit non-feasible solutions (e.g., COP – Constrained Optimization Problem)

with many constraints): modifying evaluation function, alternate dual/primal search

The last criterion is peculiar to TS and could occur for strongly constrained problems, where the
number of admissible neighbors is very small. The presence of the additional restriction of the tabu
list makes the connection characteristics of the neighbors even more critical, and therefore
techniques that allow one to proceed in the exploration of infeasible solutions and then return to
feasible solutions (one speaks in these cases of granular tabu search).

The basic TS scheme is the best improvement scheme (steepest descent) – this means it evaluates
ALL neighbors (both non-tabu and those satisfying aspiration criteria) and selects the best one as the
next solution. In this case, the tabu search is considered reactive, since next exploration depends on
the ones done before.

- In contrast, a first improvement strategy would modify this approach significantly. Instead
of evaluating every neighbor, it would accept the first neighbor it finds that improves the
current solution

- The search would stop examining neighbors as soon as an improving solution is found

Point is: we store information only to avoid specific moves.

Having defined the essential ingredients, we schematize the basic tabu search as follows:

1. Generate an initial solution 𝑥 and set 𝑘 ∶= 0, 𝑇(𝑘) = ∅, 𝑥 ∗= 𝑥
2. Generate the neighborhood 𝑁(𝑥)
3. Choose the solution 𝑦 that optimizes the evaluation criterion 𝑓(𝑦) among all solutions in

𝑁(𝑥, 𝑘) or among solutions in 𝑁(𝑥) \ 𝑁(𝑥, 𝑘) that satisfy some aspiration criterion
4. Obtain 𝑇(𝑘 + 1) from 𝑇(𝑘) by fitting 𝑦 (either the move 𝑥 → 𝑦 or some characteristic of 𝑦) and,

if |𝑇(𝑘)| ≥ 𝑡, eliminating the “oldest” solution (or move or feature)
5. If 𝑓(𝑦) is better than 𝑓(𝑥∗), place 𝑥∗ ∶= 𝑦
6. If a stopping criterion is not met, place 𝑘 = 𝑘 + 1, 𝑥 = 𝑦 and return to step 2
7. Return (𝑥∗)

73 MeMoCO Simple (for real)

Written by Gabriel R.

The scheme is very simple and follows local search, modified with the additional ingredients such as
tabu list, aspiration criteria, and stopping criteria. Therefore, in addition to what has been said above
for the specific components of tabu search, all the expedients design arrangements already
discussed for local search about:

- Determination of an initial solution
- Representation of the solution
- Definition of the neighborhood

o With relative complexity and the possibility of incremental evaluation
- Solution evaluation function (which could be different from the objective function 𝑓

o As evidenced by the use of ˜𝑓 in the presented scheme

Regarding the exploration strategies note how, as a base, a steepest descent strategy is used,
although nothing prohibits, to speed up the search, the adoption of first improvement strategies. In
addition, the possible presence of aspiration criteria necessitates the evaluation of all neighbors,
even tabu ones, which could be avoided (to increase efficiency) if such criteria were not used.

The professor shows an example of code on TS, on which different input sizes are tested:

- We only have an empirical analysis to conduct to understand the exact number and it has to
be conducted on different instances

- The right size strictly depends on the size of the problem

After a while, in metaheuristics it is useful to start from somewhere else and multistart again.

The basic scheme described above allows the development of algorithms that generally provide good
performance. These can be further improved, crucially for applications, by systematically extending
the use of exploration memory to alternate phases of search intensification and diversification.

- Intensification consists of deep exploration of certain areas of the search space that seem
promising: for example, we focus on solutions that possess certain characteristics, or on
solutions that are relatively “similar” to each other (left image)

- Diversification, on the other hand, consists of trying to identify little-visited areas of the
solutions space, with the aim of identifying promising new areas on which to intensify
research: e.g., the selection of solutions with different characteristics from the best current
solution (right image)

74 MeMoCO Simple (for real)

Written by Gabriel R.

The alternating phases of intensification and diversification are intended to orient the search
efficiently toward finding different local minima and, therefore, of globally better solutions.
Intensification and diversification can be applied to all metaheuristics, and their exhaustive exposition
is beyond the scope of our purposes: we limit ourselves here to providing some ideas on how these
can be implemented In the particular context of tabu search.

The balance between these phases is crucial, since after a while you might not find any better
solutions:

- Too much intensification: Gets stuck in local optima
- Too much diversification: Random walk without finding good solutions
- Right balance: Thoroughly explores areas while maintaining ability to escape when needed

This principle extends beyond Tabu Search to other metaheuristics (better seen up next):

- Genetic Algorithms: Population diversity vs. selective pressure
- Simulated Annealing: Temperature control (high = diversification, low = intensification)
- Ant Colony: Pheromone concentration vs. evaporation rates

Possible diversification techniques include the following:

- Use, within the same Tabu Search algorithm, different contours. E.g. example, for TSP, if a
stopping criterion occurs with a 2-opt neighborhood, the search can continue with a 3-opt
neighborhood, until an improving solution is found.

o In general, several neighborhoods can be defined that allow for solutions that are more
or less distant (dissimilar) from the center solution, and priority criteria are established
in the exploration of these neighborhoods

o Each neighborhood is associated with a tabu list, the management of which is
completely independent of that of the other tabu lists

- Modify the neighborhood evaluation function, rewarding solutions that deviate, in terms of

features, from the current one

- At the end of an intensification step, consider the best obtained solution 𝑥 and construct a
new starting solution that is as different from 𝑥 (complementary) as possible, so as to search,
through further intensification, for a better solution starting from a point in a different area of
the search space

- A more refined way (and consistent with the principles of tabu search, which is based on the
systematic use of memory) is the introduction of a long-term memory term, which collects
information about the exploration history

o Indeed, the tabu list, in its basic definition, represents a short-term memory (recency-
based memory, one stores a few recent moves), used to direct local search in order to
make the probability of cycling negligible following acceptance of deteriorating moves

75 MeMoCO Simple (for real)

Written by Gabriel R.

o Through long-term memory, new and different directions can be given to local search
o For example, statistics can be collected on the features that are more or less explored

(because they are more or less present in the solutions gradually selected in
constructing the trajectory in the search space) and based on these statistics,
incentivize (e.g., by rewarding in the evaluation function) the selection of solutions
carrying features little explored

A simple way to achieve alternating intensification and diversification phases in tabu search contexts
is to dynamically manage the length of the tabu list (parameter 𝑡, tabu tenure), which, therefore, no
longer has the mere function of avoiding the cycles potentially triggered by the acceptance of
worsening moves. In particular, in the intensification phases, 𝑡 is held at low values (the minimum 𝑡0
value that prevents cycling).

- If the best available solution 𝑥∗ is not updated for a given number of iterations, the value of
𝑡 increases, while it decreases again (to the limiting value 𝑡0) when 𝑥∗ is updated

- Note that as 𝑡 increases, the number of solutions, moves or features increase tabu and, as a
result, there is a tendency to accept solutions that are sufficiently different from the last
explored and, ultimately, to move quickly to areas of the space of the solutions other than the
current one, thus achieving diversification

Many metaheuristics are inspired by nature: have a read to “Metaheuristics—the metaphor exposed”,
a paper present here: https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12001

Consider the following example:

- In the Graph Coloring problem, we want to assign colors to the vertices of a graph such that no
two adjacent vertices have the same color (using 𝑘 colors – k-coloring)

- The goal is often to minimize the total number of colors used while ensuring a valid coloring

Given an undirected graph 𝐺 = (𝑁, 𝐸), the problem of coloring of a graph is to determine the color
number of 𝐺, denoted by 𝛾(𝐺), i.e., the minimum number of colors required to color 𝐺 and a relative
assignment of colors to each vertex (typical application is the coloring of maps).

- First, it is necessary to define the basic components of local search: we focus here on the
representation of the solution, the definition of the neighborhood and the evaluation function
(a starting solution could trivially be obtained by coloring all nodes with different colors,
although there are several possible heuristics)

- In fact, as we shall see, the problem is rather constrained and presents problems inherent in
the connection of neighborhoods (already defined as the possibility, given a starting solution,
of reaching any solution through a succession of moves), which is particularly relevant in the
case of applying a tabu search (since the tabu list tends to impoverish neighborhoods even
further)

https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12001

76 MeMoCO Simple (for real)

Written by Gabriel R.

We want to understand how to move inside of this graph, changing the color of one node at a time
(make a walk to find local minimums). Keep in mind the logic of the tabu search explores the search
space by moving from one solution to another one inside of the “neighborhood” – here, it includes all
colorings that can be obtained by changing the color of a single node.

The solution representation consists of a vector of length 𝑛 = |𝑉|, with an element for each vertex
carrying the color assigned to that vertex. Some examples are given in Figure 3, with a 3-color
(objective function 𝑓 = 3) and a 2-coloring (𝑓 = 2). Note how not all color assignments are
permissible, since they may violate constraints on the coloring of adjacent vertices.

- A first definition of neighborhood could be derived from the moves that change the color of one
node at a time, trying not to increase the number of colors used in the center solution of the
neighborhood: this involves generating a neighbor for each node and for each of the colors
used by other nodes in the center coloring

- In the example, starting from the 3-coloring in previous figure, you would get 2 neighbors for
each node, for a total of 12 neighbors: VVGRVG, GVGRVG, RRGRVG, RGGRVG, RVRRVG etc.

- Already from this small example it can be seen that none of the neighbors are eligible, making
evident the poorly connected characteristics of the defined neighborhood. We therefore have
two alternatives: change neighbors or admit the transition for ineligible solutions

Before choosing between the two alternatives, let us consider some observations about the function
of evaluating the solutions.

- The natural choice for the solution evaluation function would be the objective function to be
minimized, that is, the number of colors used by the proposed coloring. In fact, the color
number of a graph tends to be low and, in any case, not much lower than the value of the
starting solution that can be obtained by heuristics

- It follows that many feasible solutions use the same number of colors and, therefore, the
search space is extremely flat, that is, many neighboring solutions, regardless of the chosen
neighborhood, have the same value of the objective function, configuring plateaus –
snapshots capturing all relevant information about where the algorithm currently stands

77 MeMoCO Simple (for real)

Written by Gabriel R.

- Consequently, the tabu search will follow a fairly random trajectory in the search space, since
a very large number of neighbors represent equally desirable directions, thus risking visiting
many equivalent solutions before finding, just as randomly, a solution with a lower number of
colors (if a stopping criterion does not intervene first)

When faced with a graph coloring problem, we start with valid k-coloring and aim to find a solution
using 𝑘 − 1 colors. Instead of directly searching for this reduced coloring, we transform the problem
to minimize constraint violations.

- The process begins by eliminating one color, reassigning its vertices to the remaining colors.
This creates an invalid coloring that we then refine. To evaluate solutions, we count edges
where both endpoints share the same color (monochromatic edges). A solution becomes valid
when no monochromatic edges remain

- The search moves through the solution space by changing vertex colors one at a time, focusing
specifically on vertices involved in monochromatic edges. To prevent cycling, we maintain a
tabu list of recent vertex-color combinations that cannot be immediately reversed

- When we eliminate all monochromatic edges, we've found a valid coloring with 𝑘 − 1 colors.
At this point, we can attempt to reduce the number of colors further by repeating the process
with the new solution

4.13 SIMULATED ANNEALING

Simulated Annealing (SA) is a metaheuristic search algorithm that works by drawing an analogy to the
physical annealing process.

When metals are heated and then cooled slowly (annealing
– here a visual example), their atoms initially have high

energy and move freely, then gradually settle into a low-
energy crystalline structure. If cooled properly, this results in

a strong, stable configuration (cooling schedule). This
physical process inspired the optimization algorithm.

The algorithm works by iteratively exploring solutions while allowing occasional "worse" moves, with
their acceptance probability controlled by a temperature parameter. As the temperature decreases,
the algorithm becomes more selective about accepting worse solutions.

The search process follows these steps:

- First, it starts with an initial solution and temperature
o At each iteration, it generates a random neighbor solution. If this neighbor is better

than the current best solution, it's automatically accepted and becomes the new best
o If it's worse, it may still be accepted with a probability that depends on two factors:

how much worse the solution is (the "Loss") and the current temperature 𝑇(𝑘)

78 MeMoCO Simple (for real)

Written by Gabriel R.

- The probability of accepting a worse solution is calculated using 𝑝 = 𝑒𝑥𝑝(−
𝐿𝑜𝑠𝑠

𝑇(𝑘)
)

o This means that small deteriorations and/or high temperatures lead to higher
acceptance probabilities

o As the temperature decreases according to a cooling schedule, the algorithm
becomes less likely to accept worse solutions, gradually focusing on improving moves

- The cooling schedule is crucial for the algorithm's performance

o It typically starts with a high temperature where worse solutions are readily accepted,
allowing broad exploration of the solution space

o The temperature then gradually decreases, making the algorithm more selective and
focusing on local improvements

o The schedule is defined by parameters including the initial temperature, number of
iterations at each temperature, temperature decrease rate, and minimum temperature

The following is the SA scheme:

The parameter 𝑇(𝑘) represents the temperature of the process; the higher it is, the more likely it is to
accept worse solutions. As the execution progresses the temperature drops. At the theoretical level it
is possible to prove that under certain assumptions (a very long cooling time) this method succeeds in
converging to a global optimum. But on a practical level there are meta-heuristics that work better.

4.14 POPULATION-BASED HEURISTICS

There are metaheuristics that, on the other hand, maintain a population of solutions, that is, a set of
several solutions, and, at each iteration, combine these solutions together to obtain a new
population.

- The idea is that, through appropriate recombination operators, better solutions can be
obtained than current ones

- These methods are called population based and, in many cases, are inspired by natural
mechanisms, assuming a tendency of nature to organize itself into structures that are
“optimized”

79 MeMoCO Simple (for real)

Written by Gabriel R.

Population-based meta-heuristic algorithms are a class of approaches that search near-optimal
solutions by maintaining a set of candidate solutions and using population characteristics to guide the
search iteratively.

In recent years there have been many studies in this area, moreover with strong interdisciplinary
connotations that have led to the definition of different optimization paradigms, for example
Evolutionary Computation, Scatter Search e path relinking, Ant Colony Optimization, Swarm
Optimization etc. – see “Metaheuristics – the metaphor exposed”.

- The basic principles of genetic algorithms were established by Holland in 1975, and were
inspired by Darwin's evolutionary theories, published in 1859. Paraphrasing (with much
license) these theories, we can see individuals, in their different evolutionary stages, as
“solutions” that are increasingly adapted to the environment in which they live and liken the
evolution of a population of individuals to some process of “optimization”

- Individuals (parents) combine with each other (reproduction) to generate new and different
individuals (offspring) that become part of subsequent populations (generations);
participation in reproductive processes is more likely for those individuals most adapted to the
environment, according to the principles of “natural” selection (natural selection) and
“survival of the fittest” (survival of the fittest)

- Genetic algorithms attempt to simulate the evolutionary process by matching to each
individual a solution, and to the level of adaptation to the environment a fitness, that is, a
quantitative measure of the quality of the solution itself, thus trying to make solutions of
increasingly high quality survive

This is the base of the scatter search, so to get a better population at each step, which becomes on
average better in the solution space and find better solutions:

Summarizing some other methods here, which are inspired by biology, so to replace each time
different solutions from an optimization point of view. There are different ways to do so:

- Scatter search maintains a small, diverse reference set of high-quality solutions. It creates
novel solutions by systematically combining subsets of the reference solutions and improving
them with local search

- Ant colony optimization is based on how ants use pheromone trails to find efficient routes.
Artificial ants construct solutions guided by pheromone information from past searches
spread by ants and heuristic information about good decisions. Pheromone is updated to
reinforce promising solution components

https://www.uv.es/~rmarti/paper/docs/ss8.pdf
http://www.scholarpedia.org/article/Ant_colony_optimization

80 MeMoCO Simple (for real)

Written by Gabriel R.

- Particle swarm optimization moves a swarm of particles through the search space. Particles
are attracted to their own best solution and the swarm's best overall. Velocity and position
updates balance exploring new areas with exploiting good regions found so far

For the above techniques consider the summary present in the paper – Sorensen’s “Metaheuristics – the metaphor exposed”

4.15 GENETIC ALGORITHMS: SCHEMA, ENCODING, OPERATORS

At its heart, a genetic algorithm frames optimization as an evolutionary process, like how biological
organisms evolve and adapt over generations. The idea is that, by mimicking the key drivers of natural
evolution (selection pressure, recombination of genetic material, and random mutation), we can
"evolve" initially random solutions into highly optimized ones tailored to our problem (survival of the
fittest – so, the stronger/better survive).

- To start, we have to present the potential solutions to our problem in a way that allows the
evolutionary mechanisms to operate. Typically this means encoding solutions as
"chromosomes" - essentially strings of genes (bits, numbers, or symbols) that capture the key
variables or decisions.

- This chromosomal encoding is like the DNA of our candidate solutions. Just as biological DNA
encodes the traits of an organism, our artificial chromosomes encode the parameters of a
solution. This mapping between the encoding and solution space is a key design step

Genetic algorithms start with an initial population of solutions (the individuals in biological systems)
and iteratively evolve them.

- At each iteration, the solutions are evaluated (fitness, level of adaptation to the environment)
and, based on this evaluation, a few of them are selected (selection principle), favoring the
solutions (parents) with higher fitness (survival of the fittest)

- The selected solutions are recombined (reproduction) to generate new solutions (offspring)
that tend to transmit the (good) characteristics of the parent solutions into subsequent
generations

The process is articulated as follows:

1. Coding of solutions of the specific problem
2. Creation of an initial set of solutions (initial population)
3. Repeat, until a stopping criterion is met

1. Select pairs (or groups) of solutions (parent)
2. Recombine parents by generating new solutions (offspring)
3. Evaluates the fitness of the new solutions
4. Replace the population, using the new solutions

4. Return the best generated solution

https://en.wikipedia.org/wiki/Particle_swarm_optimization

81 MeMoCO Simple (for real)

Written by Gabriel R.

As with all metaheuristics, this is a very general scheme that must be specialized for different
problems. The starting point is the encoding of the solutions based on which the different genetic
operators must be defined, mainly:

- Methods for generating an appropriate set of solutions from the initial population
- Function that evaluates the fitness of each solution
- Recombination operators
- Generational transition operators

Genetic operators are based on a genetic representation of the solution that encodes the
characteristics of a solution.

- This representation corresponds to the chromosome of biological individuals, to the point that
we often speak indifferently of solution, individual or chromosome. Still continuing with the
analogy, each chromosome is obtained as a sequence (string) of genes

- Each gene is usually associated with a decision variable of the problem and assumes one of
the possible values for that variable: depending on the different values actually assumed by
the different genes, a different chromosome is obtained and, therefore, a different solution

- To go from the chromosome to the solution, the following a decoding is required (which could
be immediate) to get a solution in the COP

The following are different representations examples:

- KP/0-1 problem. Binary encoding can be used, associating each object with an order number
from 1 to 𝑛 (number of objects) and using a gene for each object that can take the values 0 or
1. Decoding is immediate: gene 𝑖 is worth 1 if and only if object 𝑖 is in the knapsack. An
example of a chromosome for 𝑛 = 10 is as follows (1,4,5,9 in the knapsack):

- TSP problem. If 𝑛 is the number of cities, we use 𝑛 genes that can take on, each, a value
associated with a city. The gene at position 𝑖 indicates the city to be visited at position 𝑖 in the
Hamiltonian cycle. The chromosome is thus a string (sequence) of cities whose decoding is
immediate, directly indicating the order of visitation, the permutation of cities (corresponds to
path representation). An example with 10 cities encoded from 0 to 9 is as follows:

which indicates the Hamiltonian cycle 3 → 2 → 6 → 1 → 8 → 0 → 4 → 7 → 1 → 5

- A job scheduling problem. They are given 𝑛 jobs to executed on 𝑚 machines. Each job consists
of an ordered sequence of 𝑘 tasks.

o Task 𝑗 of job 𝑖 is to be executed on a given machine, committing it continuously and
exclusively for a time 𝑡𝑖𝑗

o It is fixed the order of execution of the tasks of the same job, and each task must wait
until the previous task is finished. It is desired to determine the order of execution of
different tasks on different machines so as to minimize the completion time of the jobs

o The problem is a generalization of the newspaper reading problem presented in the
first part of the course: each boy corresponds to a job, each newspaper to a machine,
and a boy's reading of a newspaper corresponds to a task.

82 MeMoCO Simple (for real)

Written by Gabriel R.

o One possible encoding uses a sequence of 𝑛 × 𝑘 genes. Each gene can take values
between 1 and 𝑛. For example: let there be a problem with 4 jobs, each with 3 tasks to
be executed on machines 𝐴, 𝐵 and 𝐶. The sequence of tasks and completion times are
given in the following table.

One possible chromosome is as follows:

Note how there is no need to indicate the number of tasks in the chromosome, the sequence of tasks
being fixed in the same job.

- In this case, decoding is not straightforward and requires the use of a heuristic, for example,
the following one, of linear complexity: run through the sequence of genes and let 𝑖 be the job
indicated by the current gene; consider the first task 𝑗 of job 𝑖 not yet considered and schedule
it on the corresponding machine as soon as possible (the machine must be free, and the task
previous task terminated)

- In practice, the order of genes indicates the priority of each task on the machines (which, in
fact, is the decision variable of the problem)

- The value of the objective function is obtained by considering the time when the last task ends.
In accordance with this heuristic, the previous chromosome corresponds to the solution
shown in the Gantt diagram which has 21 as value of the o.f.

Each element of the solution (decision variable) becomes a gene, so to be used inside of the COP
(Combinatorial Optimization Problem).

- Encoding is important and affects following design steps (like solution representation in
neighbourhood search)

- Decoding to transform a chromosome (or individual) into a solution of the COP (in the cases
above it is straightforward)

All of these algorithms have genetic operators, in order to make these mechanisms work. We need a
lot of individuals, generated in a random way, in order to have an initial population diversified enough
to have a rich genetic heritage:

- To accelerate the general convergence of the method and not simply leave to chance the task
of discovering some good features that we would like to include in the solution, one can
introduce into the initial population some solutions generated with heuristics (constructive or

83 MeMoCO Simple (for real)

Written by Gabriel R.

a fast local search) possibly randomized, to obtain a variety of good individuals with several
good features

- It is important, however, that the number of such solutions be limited, so as not to affect too
much the characteristics of the solutions that will be generated in subsequent iterations,
causing them to converge, yes quickly, but toward individuals that resemble the starting
individuals (obtaining, probably, some local minima) preventing the exploration of individuals
with different and, perhaps, better ones

4.16 FITNESS FUNCTION AND GENETIC OPERATORS

It is important that the initial set be as diverse as possible and can be generated using other
randomized meta-heuristics. The focus on diversification is very important.

- The fitness function is import to give a quantitative measure of the fitness (idoneità – being
suitable) of individuals guides the processes of selection of individuals, so that, from
generation to generation, it is tending to make "survive" individuals with greater fitness, thus
passing from one generation to another their genetic makeup and therefore characteristics

- Since we are interested in obtaining optimal values of the objective function, we usually link
the fitness function to the value of the objective function (or to its inverse measure for
minimum problems)

For these reasons, we may want to use diverse variants of the o.f. so penalize non-feasible solutions,
similar to the current optimum, too much distant from the current optimum, etc.

Selection should give a greater chance to the best solutions (fittest), but also the worst ones must
have the possibility of being chosen, so as to avoid too fast convergence (prematurely!) – because
they might contain good features!

- If only the "best" individuals were selected, the algorithm could converge prematurely towards
good local points, because after a few iterations all the individuals would tend to be similar to
the best individuals in the initial population, preventing the possibility of discovering
individuals with different and, perhaps, better characteristics

- For this reason, selection is again based on probabilistic basis: individuals with a healthy
fitness have a higher probability of being selected for subsequent recombinations

Once this principle is established, there are several ways to achieve it, for example:

- Mode 1: one parent pair (or generally a group of one/more individuals) is selected at a time
- Mode 2: a subset of the current population (mating pool) is selected on fitness basis and the

individuals in this subset will be used (fished) by recombination operators

84 MeMoCO Simple (for real)

Written by Gabriel R.

The first method to achieve fitness-driven selection is the Monte Carlo method, whereby the
probability of selecting an individual is simply proportional to his or her fitness score:

In this way:

- Especially when combined with the first selection method mentioned, one could excessively
privilege the best individuals, especially in the presence of one or a few superindividuals with a
fitness value much higher than that of the others

- Such individuals tend to be selected very frequently, generating so-called offspring similar to
them and, again, in a few iterations the population could converge towards individuals not too
dissimilar from superindividuals (local minimum)

The literature suggests various methods to overcome this disadvantage, including:

- Linear ranking: individuals are sorted by increasing fitness and selected in proportion to their
position (ranking) in the order.

o This cancels out the effect of fitness values, which could be very different from each
other, while only the position of each other is considered

o More precisely, if 𝜎𝑖 is the position of the individual in the system, one has

- n-tournament: in order to select one individual, first select a small subset of 𝑛 individuals
uniformly in the population, then select the best individual in the subset

The recombination operators (crossover) act on one or more individuals generating one or more
children that "resemble" their parents: they are therefore individuals different from their parents, but
which combine their characteristics.

- Usually, the number of parents is greater than or equal to two and often exactly two, in analogy
with most natural reproductive processes

- This is precisely because, using only one individual, it would tend to make a copy of the parent,
not having the basic mechanisms to obtain different solutions

From 𝑛 parents it is possible to obtain 𝑚 different but similar children. One way you can generate
children is to choose genes from various parents, giving more choice to the best parent’s genes
(uniform). An alternative is to inherit genes from "block" (k-cut-point) parents.

- Uniform crossover: from two parents, a child is generated. The genes of the child are copied by
the first parent with probability 𝑝 and by the second parent with probability (1 − 𝑝). Usually,
𝑝 = 0.5 is used, or calculated in a way proportional to fitness (so that the child resembles
more closely the parent with higher fitness)

85 MeMoCO Simple (for real)

Written by Gabriel R.

The following is an example of uniform crossover on a binary chromosome:

- K-cut-point crossover: it assumes that neighboring genes control related characteristics, so
that for children to preserve parental characteristics, blocks of contiguous genes must be
passed.

o In practice two parents are considered and 𝑘 cut points, 𝑘 ≥ 1 (k cut-point crossover)
are defined randomly

o Then you get a first child by copying the blocks defined by the cut points alternately
from the first and second parent, and in a complementary way you get a second child

Below we give an example of 1 cut-point crossover:

Crossover provides the basic mechanism for generating new and different individuals. To make it
more effective, one can integrate it with the following steps.

A key to the evolutionary process are random mutations, which must also be encoded within the
algorithm during or immediately after the reproduction process.

- The mutation is replicated by randomly modifying some genes of the new generation. This
prevents a genetic drift, which is to say a population in which all individuals have the same
value for some genes – that’s why we introduce mutation to complement crossover

- This reintroduces the diversity of genes and slows down population convergence. You can
then use a larger mutation to further diversify the population

Example: possible mutation operator on a binary chromosome. Each of the 𝑛 genes of a solution 𝑥 is
considered separately and modified with probability 𝑝𝑚:

The mutation operator also has the important function of counteracting the premature convergence of
the population, which is a situation in which all individuals of the population are similar to each other.

- This could easily happen, despite the attention in the selection of parents, precisely because
the crossover tends to generate children that resemble parents and, therefore, with the
progress of iterations that still favor the best individuals, they are alike

86 MeMoCO Simple (for real)

Written by Gabriel R.

- The same situation could occur in the initial population, although the generation of the initial
population must take care of the diversification of individuals

In any case, it is possible that no individual of the current population possesses characteristics which
are desirable for optimality of the solution. The mutation operator is then used to introduce, in a
random manner, characteristics not possessed by the current population.

- Finally, by dynamically controlling the parameters regulating mutation probability, steps of
diversification could be implemented: it is a question of introducing measures of the
population’s convergence towards certain chromosomes or gene blocks, and, above a certain
threshold, increase the probability of mutation (which usually assumes very low values, of the
order of 103), to modify the individuals generated and obtain different solution

- The mutation operator mimics the natural reproduction mechanism mutation, which occurs
during chromosome crossover, introducing more or less "lucky" characteristics in terms of
adaptation to the environment

In nature, the level of adaptation to the environment depends not only on an individual’s genetic
background but also on experiences, which allow further development of the genetic potential and
increase the ability to survive and enter into reproductive processes: for example, children are sent to
school.

- A similar mechanism can be simulated, complementing the recombination operators, through
a local search: starting from the generated child, a local search algorithm is applied, and the
child is replaced by the corresponding local minimum

- In this case it is important to find a compromise between the quality of the solutions and the
computational effort

- Therefore, as a rule, local search operators are preferred not systematically applied to all
children but only to a selection (random or fitness-driven) of few individuals in the population

The crossover and mutation operators could generate chromosomes corresponding to unacceptable
solutions (unfeasible offspring): think, trivially, of a binary-coded knapsack problem. There are several
ways to manage the presence of chromosomes corresponding to non-eligible solutions, including:

1. Reject infeasible solutions
1. The method is not widely used, as several attempts may be required before a qualified

chromosome can be generated (by chance)

2. Accept the presence of infeasible chromosomes in the population
1. As mentioned, these chromosomes may contain desirable features and used by

recombination operators, could lead to good solutions
2. Therefore, these are allowed in the population, but appropriately penalized by the

fitness function, in relation to the degree of inadmissibility

3. "Repair" the infeasible chromosomes
1. It is a question of applying repair techniques, specific to each problem, which

implement a forced mutation of a chromosome, transforming it into a feasible solution

87 MeMoCO Simple (for real)

Written by Gabriel R.

Example: KP/0-1 with binary coding. Given a chromosome that has the capacity of the backpack, one
by one the objects in the reverse order of the ratio prize/weight are eliminated, until you get an eligible
chromosome that enters in the population.

4. Design of encoding and/or operators that automatically guarantee the eligibility of generated
chromosomes

1. This is typically the best solution, when it can be implemented without excessive
computational overhead

(In all of the following screens: genitore = parent / figlio = child)

Example: TSP. As we have seen, a possible coding is given by the positional chromosome
corresponding to the path representation. To make a chromosome feasible, it is necessary and
sufficient that all genes are all different between each other. This feature, for example, may be
destroyed by a uniform crossover or from a cut/point crossover, as seen in the following example with
10 cities:

The operator can be modified to preserve the eligibility of children, obtaining the order crossover:
defined the two cut points, child 1 (Ref. 2) returns the external parts of parent 1 (Ref. 2); the remaining
genes are obtained by copying the missing cities in the order they appear in parent 2 (Ref. 1):

Similarly, to prevent the mutation from affecting the acceptability, define the mutation by substring
reversal: two points of the sequence are randomly generated and the subsequence between the two
points is reversed (corresponds to a 2-opt move):

Note that the order crossover and inversion mutation operators can be used in all cases where the
solution is obtainable as element permutation (think of the case of KP/0-1 with encoding/decoding
obtained as an ordered sequence of objects).

88 MeMoCO Simple (for real)

Written by Gabriel R.

4.17 POPULATION MANAGEMENT

For each iteration, the new population is obtained by considering the previous iteration’s population
and the generated offspring. Clearly, if you simply add the new individuals, the population will grow
exponentially and therefore population management policies are needed.

- Usually, the number of individuals in the various iterations is kept constant, controlled by an 𝑁
parameter. There are no shortage of cases where this number is dynamically varied (for
example, higher to diversify the research and lower to intensify)

Once 𝑅 new individuals are generated through recombination (could be 𝑅), the basic population
management policies are as follows:

- Generational replacement: 𝑅 = 𝑁 new individuals are generated, replacing the 𝑁 old ones
(mimics biological systems)

- Steady state: unlike the previous one, it replaces only a minimal number of elements from the
previous generation, selected with fitness-driven criteria (they are tending, on a probabilistic
basis, to be replaced by the worst individuals)

- Elitism: as generational replacement, but some (few units) of the individuals with greater
fitness than the previous population are maintained

- Best individuals: the current population is maintained with the best 𝑁 individuals among the
𝑁 + 𝑅. The selection may be deterministic or probabilistic (select, with the Montecarlo
method, 𝑁 individuals among the 𝑁 + 𝑅, with probability proportional to fitness)

In practice, mixed techniques are often used. In addition, as we have seen, one of the characteristics
to be preserved in the population is still sufficient diversification.

- Therefore, to avoid a premature convergence of the method, acceptance of a new individual in
the population could be made conditional on an assessment of how different this individual is
from the others, for example using the Hamming distance as a measure of diversity (it may be
useless, especially in the phases of diversification, to insert an individual into the population
whose chromosome is exactly the same as another present one)

- In any case, a dynamically managed "diversity" threshold could be used to implement
intensification and diversification phases

Some examples of stopping criteria might be:

- Time limit (maximum execution time)
- Maximum number of iterations (or generations)
- Number of (not improving) iterations (=generations): stops when the latest improving

individual in the o.f. was found many generations before
- Population convergence: all individuals are similar to each other (pathology: not well designed

or calibrated) – convergence measures might be similar chromosomes or low fitness variance

89 MeMoCO Simple (for real)

Written by Gabriel R.

4.18 OBSERVATIONS ON GENETIC ALGORITHMS: CALIBRATION & PERFORMANCE

Genetic algorithms are very general, but they fall into the category of “soft” methods, since they
cannot exploit the specific problem properties: we are not thinking about the problem to solve, but the
population to evolve. They have many parameters which impact performance and probability of their
application, since many parameters are not deterministic (= need to be calibrated).

- On the advantages side, genetic algorithms are remarkably versatile and robust. Their primary
strength lies in their adaptability - they require only two basic components to function: an
encoding scheme for solutions and a fitness function to evaluate them

- However, this apparent simplicity masks a significant challenge: the need for extensive
parameter calibration. They are not so controllable, since parameter calibration (=finding
standard values working on all instances of the same problem) is difficult

- These parameters include population size, mutation rates, crossover probabilities, and
selection criteria, among others

- This phase is very important but often left to the user, repeating the same runs – even the
single run is fast, the user spends much time

Genetic algorithms are in the class of weak methods or soft computing (exploit little or no knowledge
of the specific problem) – only components of the problem are encoding/decoding of the
chromosomes and fitness evaluation, but other components exploit standard implementations.

A final note goes to the importance of alternating, in genetic algorithms as in all metaheuristics,
phases of intensification and diversification. These can be implemented in the different genetic
operators, as described above and summarized below by way of examples:

- Dynamically varying the probability of mutation
- Introducing appropriate penalties in fitness, to penalize or encourage (with dynamic weights,

which is and variables during iterations) individuals with certain characteristics
- Linking the likelihood of acceptance of a new individual not only to fitness, but also to his

degree of diversity from the remaining individuals
- Increasing the number of individuals subject to local research after their generation in order to

intensify it

When evaluating an optimization algorithm, several critical factors must be considered. The
implementation choices and the determination of parameters are factors that contribute to
determining the performance of an algorithm, and both must be carefully carried out.

- Simplicity of implementation, considering the resources (economic, time, personnel) available
- Computation time, and the computational efficiency of the algorithm, considering the actual

time available to find solutions
- Quality of the solutions obtained, that is the "goodness" (or effectiveness) of the algorithm

90 MeMoCO Simple (for real)

Written by Gabriel R.

- Algorithms with probabilistic components, the robustness or reliability of the algorithm
(reliability), the ability to produce good solutions in every run, regardless of the particular
random choices

We may have an experimental analysis, which is empirical:

1. Implementation of the algorithm

2. Selection of an appropriate set of instances (specific cases) of the problem
1. The instances can be real, and/or randomly generated, and/or standard benchmarks

provided by literature
2. The choice of sample depends on the purposes of the evaluation:

1. For example, if we want to see the behavior of the algorithm in a specific
company, it will be appropriate to consider many real instances

2. If we want to demonstrate that our algorithm is better than others in general, «it
is necessary to refer to standard benchmarks»

3. If we want to test robustness, it will be appropriate to include in the sample
several randomly generated instances

3. The tests are carried out, recording for each execution the evaluation of the solutions
produced and the required calculation times. In the case of parameters (almost always for
metaheuristics), it is advisable to preface a calibration step of the parameters themselves (as
described below) and use the same parameter definition for all tests.

1. Furthermore, if the algorithm is not deterministic, a reasonable number of executions
on each instance must be considered and average performance values or more
accurate statistics, including robust, evaluated

4. Comparison of the results obtained: the objective function is compared with the value of the
optimal solution (when this is known) or with bound values or with the performance of
alternative algorithms, obtaining relative measurements of goodness. Similarly, relative
estimates of the time taken for calculation can be made

This approach is always practicable and fairly simple, at least conceptually, and often the one
practiced, even if the conclusions drawn from it are not generally valid, since the analysis depends
strongly on the instances considered.

Another approach is the probabilistic analysis, which is based on the concept of the average instance
of the problem, expressed as a distribution of probability over the class of all possible instances.

- The execution time and the value of the solution are treated as random variables, the tendency
of which is studied, generally to tend the dimensions of the instances to infinity according to a
certain distribution of probability (usually uniform)

- This approach has strong theoretical foundations but is often impractical (only possible for
very simple algorithms)

- Furthermore, the extent of the real case approach is not well known, as the actual distribution
of probabilities for data may be unknown or too complicated to be treated analytically

91 MeMoCO Simple (for real)

Written by Gabriel R.

Another case is the worst case analysis, which is based on the determination of the maximum
deviation (absolute and relative) that the solution produced by the algorithm can have compared to
the optimal solution.

- The analysis is conducted with respect to the worst-case conditions for the algorithm. The
result obtained is very strong and of great value (algorithms with guaranteed performance),
although it may be difficult to derive it

- Also, often, the resulting indications are very pessimistic compared to the average behavior of
the algorithm

Particularly important for the exercise is the parameter calibration (or estimation), which begins with a
recognition that the process must be completed before any algorithm deployment, and the resulting
parameter settings should be applicable across all instances of the problem.

- This requires a systematic approach using a sufficiently large and representative set of
problem instances, which are to be pre-deployed (always choose the same parameter
setting), to be then estimated for every instance, justifying the rule calibration so to obtain the
right settings.

- It is to emphasize that it is a good rule to fix once and for all the values (absolute or functions),
and not adapt them to each individual instance, otherwise you risk spending time "optimizing
parameters" to optimize a single problem.

Parameter calibration techniques have recently become the subject of research, and they range from
black-box techniques to identify the parameters that guarantee the best performance (black box
optimization), to automatic adaptation of parameters (adaptivity), involving interdisciplinary domains
such as artificial intelligence. Here, however, we limit ourselves to mention the standard techniques,
simple to implement.

- It is essentially a matter of carrying out repeated tests with different sets of parameters on a
small set of instances (test instances), so as to make the time for the tests reasonable

o The tests are evaluated with the criteria seen above, in order to choose the set of
parameters that experimentally guarantee the best performance on the test instances

o The parameters to be calibrated are generally few for metaheuristics with trajectory,
while they tend to be many for population-based metaheuristics

- Obviously, the parameters interact with each other in determining performance, so that the
difficulty of calibration grows exponentially with the number of parameters

o In addition, a factor that complicates calibration further and the presence of random
components, which make it more difficult to interpret the influence on performance of
a parameter variation, since the performance itself could simply depend on the case

o For example, the calibration of genetic algorithms could be the real critical step in their
use, while their implementation can be relatively simple

92 MeMoCO Simple (for real)

Written by Gabriel R.

The process follows a three-phase methodology using distinct data subsets (sufficiently large and
representative):

- Select an instance subset for training (= training set)
o Computational experiments and testing different parameters configurations

- Extensive runs on the training set
o Verify parameters effectiveness to ensure training instances work

- Select an instance subset for validation (= validation set)
- Performance analysis to select better parameters
- Take interaction among parameters into account
- Stochastic components make the calibration harder
- Select an instance subset for test (= test set)
- Runs with the estimated parameter to evaluate the “final” performance

The professor shows us an algorithm for which multiple runs obtain different values, but he says, do
not spend that much time on tuning, rather spend your mind on the actual problem resolution. You
want to obtain a specific tradeoff between complexity and time.

The parameter setting should depend on some easy feature of the instance, so look at the instance,
for example:

For example, considering a tabu search, a tabu search with aspiration criteria and local search, one
gets the average performance of TSP on a specified number of values:

93 MeMoCO Simple (for real)

Written by Gabriel R.

There are a lot of metaphor-based algorithms; what matters the most is the results part!

- Recent literature proposed a true tsunami of “novel” metaheuristic methods, most of them
based on a metaphor of some natural or manufactured process: the behavior of any species
(bees, wasps, monkeys, apes, birds etc.), the flow of water, musicians playing together etc.

- Actually, the basic principles are often not novel, but the same as for trajectory or population
based methods

Inside the Moodle, you will find these references, to be used in general both for this part and the
second assignment:

We’ll be coming back to the hybrid metaheuristics in the last part of the course unit (last lesson),
based on math or data driven optimization techniques (basically, the last 3-4 slides of this set).

4.19 HYBRID METAHEURISTICS

In these notes, only some of the possible metaheuristics for combinatorial optimization have been
given.

- The approach is understood in a much more flexible sense, and those proposed are only
suggestions for design choices that must be adapted and questioned according to the
particular problem to be solved.

- In this sense we can interpret the development of hybrid metaheuristics in recent years, which
seek to combine the merits of different algorithmic schemes.

94 MeMoCO Simple (for real)

Written by Gabriel R.

- Hybridization may take place at various levels and according to different schemes, and their
treatment would require a more in depth study outside the scope of the course and refer to
specific texts.

We provide below some examples of possible hybridizations, which usually give rise to more powerful
algorithmic schemes:

- One common hybridization approach combines population-based methods with trajectory
methods

o For instance, genetic algorithms can be used to identify promising regions of the
solution space, while local search techniques provide intensification within these
regions

o A practical example involves using genetic algorithms to generate initial solutions that
are then explored more thoroughly using Tabu Search

- Different metaheuristics can also be combined directly
o For example, Tabu Search principles can be integrated with Simulated Annealing by

incorporating probabilistic acceptance criteria into the Tabu Search framework, or by
adding memory structures to Simulated Annealing algorithms

- Matheuristics represent a particularly interesting class of hybrid methods that combine
mathematical programming with heuristics.

o This is currently a hot research area with several promising directions. These include
construction heuristics driven by mathematical models, exact methods for exploring
large neighborhoods, and heuristics that provide bounds for exact methods

o Common frameworks in this area include Local Branching and Kernel Search

- Another emerging trend is data-driven optimization, where machine learning and artificial
intelligence techniques are integrated into optimization methods

o This includes using ML for parameter tuning, AI for detecting promising search regions,
and various guided search techniques like ML-guided granular search

- Real-world applications demonstrate the effectiveness of hybrid approaches
o For instance, in pickup and delivery problems, two-level local search combines Tabu

Search for intensification with Variable Neighborhood Search for diversification,
enhanced by randomization

o Traffic flow management problems benefit from data-driven matheuristics that utilize
historical trajectory data and components determined through data analytics. Electric
vehicle sharing systems employ combinations of mathematical models with various
heuristic approaches, including partition heuristics and neighborhood search.

The key advantage of hybrid approaches lies in their ability to combine the strengths of different
methods while compensating for their individual weaknesses. This makes them particularly valuable
for complex real-world optimization problems where single approaches may struggle to provide
satisfactory solutions.

Side note: see here for the complete ending of this course. This subsection was quoted there just to
complete the file.

95 MeMoCO Simple (for real)

Written by Gabriel R.

5 LINEAR PROGRAMMING & SIMPLEX METHOD (4)

(Note: see for this part here for a more complete thing and here for the course part – both Italian)

Initially we saw how the solutions of a whole linear programming problem are located on the vertices
of the eligible region and how it was possible to find a solution in graphical way.

With the simplex method, similar considerations are made, but at an algebraic level, so that they can
be generalized to cases using more than two variables.

The simplex method is an algorithm for solving linear programming (LP) problems in standard form:

𝑚𝑖𝑛 𝑐𝑇𝑥 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0

where:

- 𝐴 ∈ ℝ𝑚×𝑛 is the constraint matrix
- 𝑏 ∈ ℝ𝑚 is the right-hand side vector
- 𝑐 ∈ ℝ𝑛 is the cost vector
- 𝑥 ∈ ℝ𝑛 is the variables vector

5.1 DEFINITION AND GENERAL NOTATIONS

A general mathematical programming model takes the form that follows:

A linear programming model requires that both the objective function 𝑓(𝑥) and all constraint functions
𝑔𝑖(𝑥) must be linear functions of the variables. This means they take the specific form:

https://www.math.unipd.it/~luigi/courses/ricop1920/m02.PLsim.01.pdf
https://www.math.unipd.it/~luigi/courses/metmodoc1920/m02.ripassoPL.pdf

96 MeMoCO Simple (for real)

Written by Gabriel R.

For problems requiring integer or binary variables, different solution methods are needed beyond
standard linear programming techniques.

- The linearity requirement is significant because it allows for specialized solution methods like
the simplex algorithm. Linear functions have properties that make optimization more tractable
compared to general nonlinear functions

- However, this also means that any nonlinear relationships in the real problem must either be
approximated linearly or handled through different optimization techniques

In the simplex method:

- We use only continuous variables
- There are NO strict equalities
- The objective function is obtained by the scalar product of the two vectors 𝑐 and 𝑥

More compactly, we can write the problem in this way:

An LP model has three possible outcomes, and the resolution process aims to determine which one
applies:

- A feasible solution is any point 𝑥 in an 𝑛-dimensional real space (ℝ𝑛) that satisfies all
constraints in the model

- The feasible region comprises all such points
- An optimal solution 𝑥 is a feasible solution that optimizes (maximizes or minimizes) the value

of the objective function among all feasible solutions

𝑐𝑇𝑥∗ ≤ (≥) 𝑐𝑇𝑥, ∀𝑥 ∈ ℝ𝑛, 𝑥 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

Not always a PL problem is an optimal solution. In fact, it can be shown that each PL problem always
satisfies only one of the following 3 cases:

1. Unfeasible: the feasible region is empty
2. Unlimited: it is possible to find feasible solutions that make decrease (or increase for

maximum problems) the value of the objective function as you like
3. Admits an optimal solution: there is at least one acceptable solution which optimizes the

objective function (and the optimum value of the objective function is limited)

Solve a LP problem by recognizing one of the three cases mentioned and giving, in case 3, an optimal
solution and the corresponding value of the objective function.

97 MeMoCO Simple (for real)

Written by Gabriel R.

5.2 GEOMETRY OF LINEAR PROGRAMMING

Consider the following example:

The farmer's problem is a maximization LP with two variables (𝑥𝑇 for tomatoes and 𝑥𝑃 for potatoes):

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 6000𝑥𝑇 + 7000𝑥𝑃

The feasible region, shown in gray on the graph, is bounded by several lines representing the
constraints. The key points defining this region are:

- Origin (0,0)
- Point (0,6) on the potato tubers constraint
- Point (2.5,6) where potato tubers and fertilizer constraints intersect
- Point (7.5,3.5) where fertilizer and tomato seeds constraints intersect
- Point (10,1) where land and fertilizer constraints intersect
- Point (10,0) on the x-axis

The objective function is represented by the blue arrow showing its gradient (direction of steepest
increase). The dashed parallel lines are level curves of the objective function, perpendicular to the
gradient.

- To maximize the objective function, we move in the direction of the gradient until we reach the
furthest possible point in the feasible region. This occurs at the point (7.5,3.5), where the
fertilizer constraint (10𝑥𝑇 + 20𝑥𝑃 = 145) intersects with the tomato seeds constraint (7𝑥𝑇 =

70)

- The optimal solution is therefore: 𝑥𝑇 = 7.5 hectares for tomatoes 𝑥𝑃 = 3.5 hectares for

potatoes

- The maximum profit can be calculated by plugging these values into the objective function:

6000(7.5) + 7000(3.5) = 45,000 + 24,500 = 69,500 euros

98 MeMoCO Simple (for real)

Written by Gabriel R.

Geometrically, a solution is a point in the n-dimensional space and the feasible region is a convex
polyhedron inside of the same space:

A polyhedron is a geometric object formed by the intersection of a finite number of closed half-spaces
and hyperplanes in 𝑛-dimensional real space. In the context of linear programming, this represents
our feasible region – the set of all points that satisfy our constraints.

Points on the polyhedron are to be represented graphically by vertices, which represent geometrically
the convex combination on the plane (if they are convex, they are inside of the feasible region):

The following brings us to another theorem:

99 MeMoCO Simple (for real)

Written by Gabriel R.

For the Minkowski-Weyl theorem, the convex combination of all the vertices of a polyhedron allows us
to represent all the points belonging to the polyhedron.

So, for the optimal vertex theorem, if a LP can be represented by a polyhedron 𝑃, then there is at least
one optimal solution and one of these is on a vertex. This is an important result because we can limit
the search for the optimal solution on the vertices of 𝑃 and not on the whole space.

So basically:

- This theorem has profound practical implications: when solving a linear programming
problem, we can restrict our search to vertices of the feasible region rather than considering
all points in 𝑃

- The theorem transforms what appears to be an infinite search problem into a finite one,
though the number of vertices may still be exponentially large

Now we consider how the vertices problem intersection of hyperplanes arises:

Each vertex in the feasible region is created by the intersection of exactly two constraints
(hyperplanes in this 2D case). The image shows several key vertices:

100 MeMoCO Simple (for real)

Written by Gabriel R.

- Point B occurs at the intersection of constraints e1 and e2, giving coordinates (2, 9/2) with
objective value 71

- Point C forms where e1 and e3 meet, at coordinates (4, 3) with objective value 82
- Point E comes from e3 intersecting x₂ = 0, at (6, 0) with value 78
- Point A results from e2 meeting x₁ = 0, at (0, 5) with value 50
- The origin (0, 0) is formed by x₁ = 0 intersecting x₂ = 0, with value 0

In this case, vertex C at (4, 3) provides the optimal solution with the highest objective value of 82. This
aligns with the theory that an optimal solution will occur at a vertex formed by intersecting
hyperplanes.

Understanding how vertices form from constraint intersections is crucial because:

1. It helps visualize how the feasible region is bounded
2. It provides a systematic way to identify candidate optimal solutions
3. It forms the theoretical foundation for algorithms like simplex that move between adjacent

vertices

We want to transform inequalities in equalities (we have some gap, which are to be called slack
variables). In this case, there is a specific algebraic representation of vertices:

In our linear programming problem, we start with inequalities: 3x₁ + 4x₂ ≤ 24 x₁ + 4x₂ ≤ 20 3x₁ + 2x₂ ≤ 18

To convert these into equations, we introduce slack variables (s₁, s₂, s₃) that represent the "gap"
between the left and right sides of each inequality:

3x₁ + 4x₂ + s₁ = 24 x₁ + 4x₂ + s₂ = 20 3x₁ + 2x₂ + s₃ = 18

These slack variables must be non-negative, as they represent the amount by which each constraint is
not tight.

There is some degree of freedom – in this system, we have:

- Variables total (x₁, x₂, s₁, s₂, s₃)
- 3 equations; this gives us 5 - 3 = 2 degrees of freedom, meaning we can set any two variables

to zero and solve for the remaining three variables to potentially find a vertex.

To find a vertex algebraically:

1. Select any two variables to set to zero
2. Solve the resulting system of three equations in three unknowns
3. Verify the solution is feasible (all variables non-negative)

For example:

- Setting s₁ = s₂ = 0 gives vertex B at (2, 9/2) with s₃ = 3
- Setting x₁ = s₂ = 0 gives vertex A at (0, 5) with other variables s₁ = 4, s₃ = 8
- Setting s₂ = s₃ = 0 gives point (3.2, 4.2) with s₁ = -2.4, which is not feasible because s₁ < 0

101 MeMoCO Simple (for real)

Written by Gabriel R.

This algebraic approach provides a systematic way to identify all vertices of the feasible region by
examining different combinations of variables set to zero.

Whenever we have a negative slack, the problem is not feasible (not inside of the feasible region).

- Note that this solution corresponds to the vertex B. Infact, place s1 = s2 = 0 means, from a
geometrical point of view, saturate the constraints (e1) and (e2): the solution will then be
found at the intersection of the corresponding lines. Another particular solution can be
obtained by fixing at 0 the variables x1 and s2, which leads to the solution x1 = 0, x2 = 5, s1 = 4,
s2 = 0, s3 = 8, corresponding to the vertex A.

- We therefore feel that, among the infinite (∞5−3) solutions of the system of equations equates
to the constraints of the problem, there are some particular ones: these solutions are
obtained by setting a suitable number of variables to 0 and correspond to vertices of the
eligible region.

- Note that the variables to be set at 0 must be appropriately chosen. For example, if x1 = s1 = 0,
we get the solution x1 = 0, x2 = 6, s1 = 0, s2 = 4, s3 = 6 which does not correspond to a vertex of
the polyhedron: the solution obtained is in fact inadmissible since s2 < 0 indicates that the
constraint (e2) is violated.

We try to generalise these observations.

- The first step is to write the constraints of a PL problem in a convenient way as a system of
linear equations

- The second step is to manipulate the system of equations in order to derive solutions
corresponding to vertices of the allowable polyhedron.

We then introduce the standard form for a PL problem and recall some notations and properties of the
linear algebra.

102 MeMoCO Simple (for real)

Written by Gabriel R.

To create a generic approach to use, we consider the standard form for LP problems, with all variables
≥ 0, so to find easily the unfeasible form, with all constraints as equalities:

Here:

- The objective function is minimization and without additive or multiplicative constants
(multiply the maximizing functions by −1; additive constants can be neglected; positive
multiplicative constants may be overlooked, the negative multiplicative constants can be
eliminated by changing the direction of optimization)

- All variables are positive or nil (if and where there are substitutions of variables for the free or
negative variables)

- All constraints are equations (add a positive slack variable for the ≤ constraints and subtract a
positive surplus variable for the ≥ constraints)

- The known terms 𝑏𝑖 are all positive or null (multiply by −1 the constraints with negative
constant term)

This allows, without loss of generality (wlog) to solve whatever PL problem via systems of linear
equations.

Consider the following example of the standard form, where we use what described above via
whatever PL problem using linear equations systems:

103 MeMoCO Simple (for real)

Written by Gabriel R.

Here's how we transform the original problem:

Step 1: Convert Maximization to Minimization

The objective max 5(-3x₁ + 5x₂ - 7x₃) + 34 becomes: min -5(-3x₁ + 5x₂ - 7x₃) - 34, which simplifies to: min
-15x₁ + 25x₂ - 35x₃ - 34

Step 2: Unrestricted Variables Handle

For x₁ ≤ 0: Replace x₁ with -x̂ ₁ where x̂ ₁ ≥ 0

For unrestricted x₃: Replace with x₃ = x₃⁺ - x₃⁻ where x₃⁺, x₃⁻ ≥ 0

Step 3: Convert Inequalities to Equations

Add slack variables (s₁, s₂, s₃) to convert inequalities into equations:

- For ≤ constraints: Add slack variable
- For ≥ constraints: Subtract slack variable

Step 4: The Final Standard Form

Objective: min -3x̂ ₁ - 5x₂ + 7x₃⁺ - 7x₃⁻

Subject to: 4x̂ ₁ + 7x₂ + 6x₃⁺ - 6x₃⁻ + s₁ = 5 3x̂ ₁ + x₃⁺ - x₃⁻ - s₂ = 1 x̂ ₁ - x₂ - s₃ = 2

Non-negativity: x̂ ₁, x₂, x₃⁺, x₃⁻, s₁, s₂, s₃ ≥ 0

This standard form ensures all variables are non-negative and all constraints are equations, making it
suitable for solution methods like the simplex algorithm.

Now, some recalls of linear algebra:

So, basically a system of 𝑚 linear equations in 𝑛 variables can be written in matrix form as 𝐴𝑥 = 𝑏,
where:

- 𝐴 is an 𝑚 × 𝑛 matrix containing the coefficients
- 𝑥 is an 𝑛-dimensional vector of variables
- 𝑏 is an 𝑚-dimensional vector of right-hand side values

104 MeMoCO Simple (for real)

Written by Gabriel R.

There are different ways on which we calculate solutions for systems of linear equations as seen
below:

One way to solve a system of linear equations refers to the concept of base which is present when the
matrix has maximum rank (square submatrix 𝐵 ∈ ℝ𝑚×𝑚), obtained by taking 𝑚 linearly independent
columns from the matrix. Having the determinant not null, we could rewrite the system as:

We can find the variables present in the basis with:

The variables outside of the base are set to 0 (𝑥𝐹), we get a basic solution. In a basic solution at least
𝑛 − 𝑚 variables are equal to 0 (if more, the basis becomes degenerate).

We get the values of what’s present in base (𝑥𝐵) finding a feasible solution when coming back to the
original constraints.

105 MeMoCO Simple (for real)

Written by Gabriel R.

Since vertices and basic solutions correspond (𝐴𝑥 = 𝑏 ⇔ 𝑥 𝑖𝑠 𝑎 𝑃 𝑣𝑒𝑟𝑡𝑒𝑥), the solving the linear
system brings a polyhedron vertex; to use different bases, one only needs to change the variables
fixed to 0. Everything said up to know is summarized below:

All of the non-basic variables are set to 0 → basic solution.

In a linear program in standard form, we seek to minimize 𝑐ᵀ𝑥 subject to 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0. A basic
solution becomes feasible when all basic variables are non-negative. Let’s look at an example:

Looking at the example provided:

- We have three equations with five variables (x₁, x₂, s₁, s₂, s₃), where s₁, s₂, s₃ are slack
variables: 3x₁ + 4x₂ + s₁ = 24 x₁ + 4x₂ + s₂ = 20 3x₁ + 2x₂ + s₃ = 18

- Coefficient matrix A is shown as a 3×5 matrix containing both the original coefficients and the
identity matrix corresponding to slack variables

106 MeMoCO Simple (for real)

Written by Gabriel R.

- To find a basic solution, we select a basis matrix B₁ composed of three columns from A. In this
example, B₁ is formed by columns 1, 2, and 5 of A, corresponding to variables x₁, x₂, and s₃

- The basic variables xB are computed as B₁⁻¹b: xB = [x₁, x₂, s₃]ᵀ = [2, 4.5, 3]ᵀ

- The non-basic variables xN are set to zero: xN = [s₁, s₂]ᵀ = [0, 0]ᵀ

- This gives us the complete solution vector: x = [2, 4.5, 0, 0, 3]

This basic solution is feasible because all components are non-negative. Geometrically, this solution
corresponds to vertex 𝐵 in the feasible region shown in the graph. The same continues for one another
iteration:

In this example, we can see that the chosen basis B₄ leads to a basic solution that is not feasible.

When we calculate xB = B₄⁻¹b, we get:

- x₁ = 18/5
- x₂ = 21/5
- s₁ = -18/5

The issue lies with the value of s₁. In linear programming, all variables (including slack variables) must
be non-negative due to the constraint x ≥ 0 in standard form. However, s₁ = -18/5 is negative, violating
this non-negativity requirement.

This illustrates an important principle in linear programming: while a basis B may be mathematically
valid (in that B is invertible and we can compute B⁻¹b), the resulting basic solution is only feasible if all
components of xB = B⁻¹b are non-negative. When any component is negative, as in this case, we say
the basic solution is infeasible.

107 MeMoCO Simple (for real)

Written by Gabriel R.

Geometrically, this means that while the intersection of the chosen constraints does define a point in
space (18/5, 21/5), this point lies outside the feasible region of our linear program because it violates
the non-negativity requirement for slack variables.

This relationship is captured in a key theorem that provides an algebraic characterization of
polyhedron vertices. This equivalence has several important implications.

- First, it connects the geometric concept of vertices (intersections of the right number of
hyperplanes) with the algebraic concept of basic feasible solutions (where 𝑛 − 𝑚 variables are
zero). This provides two complementary ways to understand and work with optimal solutions.

- Second, this relationship leads to a crucial corollary about optimal solutions: if the feasible
region 𝑃 is non-empty and bounded, then there exists at least one optimal solution that is a
basic feasible solution. This corollary is fundamental to linear programming because it tells us
we can restrict our search for optimal solutions to the vertices of the feasible region.

108 MeMoCO Simple (for real)

Written by Gabriel R.

5.3 SIMPLEX BASIC ALGORITHM AND EXAMPLE

The following algorithm explores all possible basic feasible solutions, which can be done efficiently
using this approach. The complexity is up to exponentiality, but the Simplex method provides a more
efficient way to explore the feasible solutions, considering only the improving ones.

To exploit this idea is to change the basic variables (take a column inside of the basis and exchange
columns between each basis):

When the basis changes, one non-basic variable increases, affecting the values of the basic variables
and the objective function value. The objective function contains only non-basic variables, and base
variables are expressed only in terms of non-basic variables.

109 MeMoCO Simple (for real)

Written by Gabriel R.

This can be expressed mathematically as follows:

You see how Gauss-Jordan (row/column operations done algebraically) applies here:

At each iteration, we want to modify a basic solution in a linear programming problem to achieve a
better objective value, while maintaining feasibility and satisfying the problem constraints.

The key steps in this example are:

1. Identify the objective function and the equality constraints that must be satisfied
2. Recognize the opportunity to increase the value of s2 to improve the objective function, while

maintaining feasibility.
3. Derive the novel solutions by expressing the basic variables (x1, x2, s2) in terms of the non-

basic variable s2.
4. Determine the feasible range for s2 that preserves non-negativity.

110 MeMoCO Simple (for real)

Written by Gabriel R.

5. Identify the new optimal basic solution when s2 = 4.

Inside of the feasible region, it is impossible to obtain better value to the optimal solution value (z)
inside of the base (basic solution), expressed in terms of the non-basic variables (so to understand up
to which limit we enter the basis):

111 MeMoCO Simple (for real)

Written by Gabriel R.

The LP problem will be expressed in a canonical form with respect to a specific basis, combining
linearly all non-basic variables with coefficients:

Each linear variable is written in the form of non-basic variables and vice versa, where each variable
will increase or decrease according to the current value of the o.f.

We start from a feasible solution, and we put a system in a canonical form (system/function) with
respect to a given basis. If all the reduced costs cannot be improved they are all positive and this is
the optimality check; we stop when they are all positive:

The condition is sufficient though; for example, to see if we can improve/reduce the cost of the
objective function we welcome variables with negative reduced costs.

The basis change is a fundamental operation in the simplex method that allows the algorithm to move
from one basic feasible solution to another while potentially improving the objective function value.

112 MeMoCO Simple (for real)

Written by Gabriel R.

This process involves two key steps:

1. The entering variable is chosen to potentially improve the objective function. Mathematically,
this means selecting a variable 𝑥ℎ such that its reduced cost 𝑐ℎ is negative, keeping the
problem feasible

2. The leaving variable is selected to maintain feasibility through the "minimum ratio rule". This
ensures that no basic variable becomes negative during the transformation

If there is strictly negative reduced costs and the coefficients related to the variables are non-positive,
then the problem is considered unlimited:

The simplex method is a systematic geometric approach to solving linear programming problems by
systematically exploring the vertices of a polyhedron defined by linear constraints. Its core strategy
involves transforming the problem into a standardized form and strategically moving between basic
feasible solutions to optimize the objective function.

113 MeMoCO Simple (for real)

Written by Gabriel R.

The algorithm follows this schema seen below:

In summary:

1. Choose the variable to enter the base, so to find an adjacent base and a feasible solution
2. Choose the variable to exit the base: use the minimum ratio rule
3. Change the base to converge to optimum
4. When all reduced costs are non-negative, stop; but if all reduced costs are negative, problem

is unlimited

Usually, there is a “human-readable” form so to represent the simplex operations, in the form of an
augmented matrix, which is the simplex tableau:

Recalling that the tableau is a schematized form of the canonical form for a linear programming
problem, we note that:

- The last column of the table shows the solution of the problem compared to the current base:
the value of the variables in base and, in the first row, the opposite of the value the objective
function

114 MeMoCO Simple (for real)

Written by Gabriel R.

- The columns of the variables in base correspond (if properly ordered) to the identity matrix
surmounted by a line of 0 (the reduced costs of the variables in base)

- The columns of the out-of-base variables correspond to the coefficients of the canonical form
(where they are preceded by the minus sign) and, in the first row, show the reduced costs

The simplex method simply goes on and terminates when all reduced costs are non-negative.
Problem is, if entering variable is not selected carefully, the method might loop encountering an
already visited solution.

5.4 TWO-PHASE METHOD

The two-phase method is a systematic approach to finding an initial feasible basis or find out if the
problem is not feasible when it is not immediately apparent. This technique ensures that we start with
a valid starting point for the simplex method.

- Construct an auxiliary optimization problem designed to find a feasible initial basis for the
original linear programming problem, while keeping it feasible (sometimes harder than the
actual problem), using 𝑦 as base (called vector of artificial variables)

- Solve the original LP problem using the simplex method, then use the initial feasible basis as
the starting point, in order to make the problem tractable

Phase 1: Artificial problem solution

So, starting from the artificial problem, the simplex method can be used to remove all artificial
variables and keep the problem solvable in some way. The following is the artificial problem:

115 MeMoCO Simple (for real)

Written by Gabriel R.

To change to the tableau (canonical) form, operations are needed on the first row, to turn the 1s into
0s and obtain, instead of 0s, the reduced costs of the variables out of base 𝑥 with respect to base 𝑦.

One can then start with the steps of the simplex described above until an optimal solution of the
artificial problem is reached. It should be noted that the artificial problem is always feasible and
cannot be unbounded.

In the end, the optimal value of the objective function of the artificial problem can be (having to
exclude the case w∗ < 0):

- 𝑤∗ > 0: it is concluded that the original problem is not feasible (and we obviously do not
proceed with Phase II).

- 𝑤∗ = 0: In this case, all artificial variables are necessarily null. They can therefore be
eliminated from the system of constraints, and the same system will be satisfied with only the
variables 𝑥. In other words, the problem is admissible. To identify the initial basis, two
subcases are distinguished:

o If all variables 𝑦 are off-base, then the final tableau of Phase 1 directly locates the
variables 𝑥 in a feasible basis and the problem is feasible

o If any variable 𝑦 is in base, then it will be in base at the value 0. It is therefore always
possible to perform pivot operations (one for each variable y in base) to exchange an
in-base 𝑦 for an out-of-base 𝑥. This yields an optimal alternative with only variables 𝑥 in
base, leading back to the first subcase

Phase 2: Solution of the starting problem

Any basis obtained at the end of Phase I can be used to initialize the simplex method. Using the
simplex tableau, at the end of Phase I we will have:

To restore the final tableau of Phase I in terms of the initial tableau of the original problem, the
following steps are taken. The columns of artificial variables are removed and the costs of the original
objective function and the value 0 for the objective function are returned to the first row:

116 MeMoCO Simple (for real)

Written by Gabriel R.

We then switch to the canonical tableau form with operations on the first row to return the reduced
costs of the variables in the base to 0.

At this point the tableau (and the system of equations it implies) is restored to its usual form for the
application of Step 1 of the simplex.

5.5 SIMPLEX ALGORITHM IN MATRIX FORM AND REVISED ALGORITHM

The simplex algorithm can be elegantly reformulated using matrix operations, providing a systematic
approach to solving LP problems in standard form, using linear algebraic techniques able to simplify
complex optimization problems.

Basic and non-basic variable sets want to represent the numbers in such a way the problem becomes
tractable, so to decompose the solution properly. So, the problem can be written as:

At any step, consider a basis B which allows us to write the same problem as:

Or in the equivalent tableau form:

117 MeMoCO Simple (for real)

Written by Gabriel R.

Solvers do not use the tableau but just compute what they need – it’s like being in a maze (feasible
solution space) and then taking a shortcut. This is done using only relevant parts.

Here:

- 𝑏 = 𝐵−1𝑏 (value of basic variables in the current basic solution)

- 𝑧𝐵 = 𝑐𝐵
𝑇𝑏 (current value of the o.f.)

- 𝐹 = 𝐵−1𝐹 (columns of the non-basic variables expressed in terms of the current basis)

- 𝑐𝐹
𝑇

= 𝑐𝐹
𝑇 − 𝑐𝐵

𝑇𝐵−1𝐹 (vector of reduced costs for non-basic variables)

At each step, then, simply invert the base matrix 𝐵 and compute the elements listed above. In fact, the
substitution steps seen above, as well as the pivot operations on the simplex tableau, correspond
exactly to the algebraic steps on the matrices. Consider, for example, the second iteration of the
simplex seen above, at the base 𝑥𝐵 and non-basic variables 𝑥𝐹.

For this specific reason, we use the (revised) simplex algorithm:

118 MeMoCO Simple (for real)

Written by Gabriel R.

The original and revised simplex methods differ primarily in how they store and update information
during the optimization process:

- The original simplex method maintains and updates the entire tableau at each iteration. This
means it explicitly stores all the coefficients for both basic and non-basic variables, as well as
the right-hand side values. When a pivot operation is performed, the entire tableau must be
recalculated using elementary row operations.

- The revised simplex method, in contrast, only maintains the essential information needed for
each iteration. Specifically, it stores:

o The current basis matrix B and its inverse B⁻¹
o The current basic solution values
o The original problem data (A, b, and c)

When evaluating potential entering variables or performing updates, the revised method computes
the necessary coefficients using matrix operations with this stored information.

Imagine you want to solve the following problem (here for complete resolution in Italian), which is then
represented by the standard form:

We now apply the simplex method, considering all the relevant parts needed – negative slack variable,
expression in matrix terms and finding of a feasible basis in 𝑥4, 𝑥5, 𝑥6:

https://www.math.unipd.it/~luigi/courses/metmodoc1920/m02.ripassoPL.pdf

119 MeMoCO Simple (for real)

Written by Gabriel R.

The formula is to always use vectors which are to be computed only once when needed, using what
we had before, computing reduced costs one at a time:

Going on with the simplex application, keeping the base feasible.

- Iteration 1 – Step 2: Inverting the base and compute the 𝑢 multipliers
- Iteration 1 – Step 3: Compute reduced costs
- Iteration 1 – Step 4: Optimality test
- Iteration 1 – Step 5: Choice of the entering variable for the basis exchange

120 MeMoCO Simple (for real)

Written by Gabriel R.

- Iteration 1 – Step 6: Updating columns (known terms and entering variable)
- Iteration 1 – Step 7: Unboundedness test
- Iteration 1 – Step 8: Determining the exiting variable for the basis exchange
- Iteration 1 – Step 9: Updating indices of the columns of the feasible base

- Iteration 2 – Step 2: Inverting the base and compute the 𝑢 multipliers
- Iteration 2 – Step 3: Compute reduced costs
- Iteration 2 – Step 4: Optimality test
- Iteration 2 – Step 5: Choice of the entering variable for the basis exchange

121 MeMoCO Simple (for real)

Written by Gabriel R.

- Iteration 2 – Step 6: Updating columns (known terms and entering variable)
- Iteration 2 – Step 7: Unboundedness test
- Iteration 2 – Step 8: Determining the exiting variable for the basis exchange
- Iteration 2 – Step 9: Updating indices of the columns of the feasible base

Contrary to the original simplex method, we stop as soon as there is a single negative cost:

122 MeMoCO Simple (for real)

Written by Gabriel R.

123 MeMoCO Simple (for real)

Written by Gabriel R.

We then arrive at the solution respecting all of the constraints, inverting at each iteration/step the
matrix:

We will get to the “column generation methods”, since at each step we take only the column that we
need at a computation step. To get to that, we will see some basic concepts of duality, to be able to
solve a particular problem even having an exponential number of variables.

124 MeMoCO Simple (for real)

Written by Gabriel R.

6 REVIEW OF DUALITY IN LINEAR PROGRAMMING (5)

Given a linear programming problem in standard form, we want to provide a lower bound (LB) on the
possible values that the objective function can take in the feasible region and we the problem is
constrained to be not less than that variable (used to estimate the value of the o.f.).

To obtain a lower bound, one can start from a vector 𝑢 ∈ 𝑅𝑚 and impose the lower bound condition
from the equation 𝐴𝑥 = 𝑏.

𝑢𝑇𝐴𝑥 = 𝑢𝑇𝑏, ∀𝑥 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

For u to represent a lower bound it is necessary that 𝑐𝑇 ≥ 𝑢𝑇𝐴, and this follows from the fact that the
value of the objective function 𝑐𝑇𝑥 must be greater than the lower bound:

𝑐𝑇𝑥 ≥ 𝑢𝑇𝐴𝑥, ∀𝑥 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

Since there is a lower bound, this means that both inequalities are correctly satisfied and get a lower
bound as close as possible to the solution:

It therefore turns out to be important to have the highest possible LB, and this is done by appropriately
choosing the vector 𝑢. The choice of this vector can be seen as a problem of maximization, in which
the decision variables are contained in the vector 𝑢.

125 MeMoCO Simple (for real)

Written by Gabriel R.

6.1 DUAL PROBLEM DEFINITION AND DUALITY THEOREMS

Duality theory in linear programming can be viewed as a tool for checking the optimality of a feasible
solution. Given a linear programming problem in minimization form, the idea is to provide a lower
bound on the possible values that the objective function can take over the feasible region.

Problem (DP) is the dual problem of (LP). In this context, (LP) is called primal problem, and the pair of
problems (LP) and (DP) is called primal-dual pair. Note that there is:

- A dual variable corresponding to each primal constraint
- A dual constraint corresponding to each primal variable

A solution to the dual problem is a lower bound to the primal problem and vice versa a solution to the
primal problem is an upper bound to the dual problem.

Weak duality provides an essential bounding mechanism. It tells us that the value of any feasible
solution to the dual problem serves as a bound on the optimal value of the primal problem. This
allows us to see that bounds are strict and not separated.

126 MeMoCO Simple (for real)

Written by Gabriel R.

This has significant practical implications for optimization algorithms, as it allows us to:

- Establish quality guarantees on solutions
o By comparing the objective values of feasible primal and dual solutions, we can

determine how far a current solution is from optimality
o This is particularly valuable when working with large-scale problems where finding the

exact optimal solution may be computationally intensive

- Develop stopping criteria for algorithms
o When the difference between primal and dual objective values becomes sufficiently

small, we can be confident that we are close to the optimal solution, allowing
algorithms to terminate efficiently

It’s impossible to have another feasible solution not being related to the actual solution bounds (note:
the conditions are sufficient):

It also holds the following:

Strong duality, which states that the optimal values of primal and dual problems are equal under
certain conditions, has even more profound implications (also for column generation methods). In
every case the problem has an optimal solution, this value is optimal for sure. Since they are not
unlimited and feasible, there is not a gap between the solutions, so the solutions are the same.

127 MeMoCO Simple (for real)

Written by Gabriel R.

To complete the proof, we will use the simplex theory.

If PL has an admissible optimal solution, then it will have a basic one that can be derived by the (𝑥∗)
simplex method from which one can construct a vector 𝑢 ∈ 𝑅𝑚 that is admissible and optimal
solution for the dual problem.

Since 𝑥∗ is a solution found with the simplex, the reduced costs of in-base variables will be zero (𝑐𝐵 =

0) and those of out-of-base variables will be greater than or equal to 0.

The simplex multipliers have got to be the feasible solution of the problem:

To make the transition from the primary problem to the dual problem, it is not necessary that the
primary problem be in standard form, the only important thing is to respect the constraints given the
relationships which logically appear between the actual constraints (below an example of primal/dual
problems couple):

128 MeMoCO Simple (for real)

Written by Gabriel R.

We just need to change the definition of primal/dual problem, to maintain upper/lower bound
relationship between primal and dual problem.

Consider another case in which in the primal problem we have free variables. We always need the
inequalities chain, so to make the same condition of before hold.

If we have two solutions, this means they are optimal for both problems – the following is the general
form for dual of an LP:

129 MeMoCO Simple (for real)

Written by Gabriel R.

We have to respect the chain of inequalities and use transformation according to the above table.
Note that the table reads from left to right if you have a primal problem in minimum form and from
right to left if you have a primal problem in maximum form.

A general example might be this one – now we apply the table of before:

There is a very special case using only free variables:

Hint: The presence of only equality constraints and only free variables suggests the direct application
of the primal-dual optimality conditions by setting up a system of linear equations containing the
constraints of the primal (equality) the constraints of the dual (free primary variables ⇒ constraints of
the dual equality) and the equality constraint between the primal objective function and the primal
objective function

As a result, we have infinite optimal solutions of type: 𝑥1 = 11 −
1

3
𝑥3, 𝑥2 = −2 −

1

3
𝑥3.

130 MeMoCO Simple (for real)

Written by Gabriel R.

Now another example, where the main message is always the same: when we have a primal problem,
get the dual problem and solve it to optimality. The value of the o.f. is a bound for the feasible solution
of the other one.

6.2 PRIMAL-DUAL OPTIMALITY CONDITIONS

The strong duality theorem provides optimality conditions: 𝑥∗ and 𝑢∗ are optimal solutions for the pair
of problems if and only if (⇔):

- 𝑥∗ is primal feasible, so 𝐴𝑥∗ ≥ 𝑏 ∧ 𝑥∗ ≥ 0
- 𝑢∗ is dual feasible, so 𝑢∗𝑇𝐴 ≤ 𝑐𝑇 ∧ 𝑢∗ ≥ 0
- Strong duality holds, so 𝑐𝑇𝑥∗ = 𝑢∗𝑇𝑏

One can then think of directly applying the primal-dual optimality conditions by setting up a system of
linear equations containing the constraints of the primal (equalities), the constraints of the dual (again
the equalities) and adding as the last constraint the equality of the functions objective.

131 MeMoCO Simple (for real)

Written by Gabriel R.

More formally, one can rewrite the optimality conditions as the following:

Keeping in mind that for problem eligibility, all factors of the summations must be ≥ 0, we have that at
the optimum it holds:

These conditions are met for each primary/dual constraint/variable. That is, two solutions 𝑥 and 𝑢 are
optimal if and only if:

• a. Each positive primal variable 𝑥𝑗 > 0 implies the saturated dual constraint 𝑢𝑇𝐴𝑗 = 𝑐𝑗
because (2) must be worth 0.

• b. Every loose dual constraint 𝑢𝑇𝐴𝑗 < 𝑐𝑗 implies the null primal variable 𝑥𝑗 = 0 because 3.8
must be worth 0.

• c. Every positive dual variable 𝑢𝑖 > 0 implies the saturated primal constraint 𝑎𝑖
𝑇𝑥 = 𝑏𝑖 because

(1) must be worth 0.
• d. Any loose primal constraint 𝑎𝑖

𝑇𝑥 > 𝑏𝑖 implies the null dual variable 𝑢𝑖 = 0 because 3.7 must
be worth 0.

Because of these conditions, we can go and check whether a given solution is optimal or not by trying
to construct a dual solution that is complementary to the given primal one.

132 MeMoCO Simple (for real)

Written by Gabriel R.

The orthogonality conditions state that for optimal solutions:

1. uT(Ax - b) = 0 This condition means that the dual variables (u) must be orthogonal to the slack
in the primal constraints (Ax - b).

2. (cT - uTA)x = 0 This condition means that the primal variables (x) must be orthogonal to the
slack in the dual constraints (cT - uTA).

Meanwhile, the complementary slackness conditions are powerful because they provide a way to
verify optimality: if we have feasible primal and dual solutions that satisfy complementary slackness,
those solutions must be optimal and one of them has to be zero when the other one has a value.

6.3 THE SIMPLEX METHOD AND DUALITY

There is a connection between the simplex method and duality, because:

- During simplex iterations:
o The multipliers give a dual solution (though not necessarily feasible)
o Complementary slackness is always satisfied
o Negative reduced costs indicate which dual constraints are violated

- At optimality:
o All reduced costs are non-negative
o The multipliers give a feasible dual solution
o Both complementary slackness and feasibility are satisfied

So, at each iteration:

- We have a basis and a basic solution derived by simplex multipliers
- Slackness holds because of primal feasibility, satisfying the linear system
- A negative reduced cost means dual constraint is violated

133 MeMoCO Simple (for real)

Written by Gabriel R.

- At optimality (last iteration), all reduced costs are non-negative, all dual constraints are
satisfied and multipliers from a feasible solution

Let us consider the (partial) proof seen for the strong duality theorem. We have seen that given an
admissible solution of the basis and the corresponding multipliers of the simplex 𝑢𝑇 = 𝐶𝐵

𝑇𝐵−1 the
condition “reduced cost of a variable with respect to the basis is nonnegative” is equivalent to saying
“the corresponding dual constraint is satisfied by the dual solution obtained from the multipliers.” In
fact, the definition of reduced cost traces the definition of the dual constraint:

Moreover, it can be seen that the multipliers themselves, viewed as solutions of the dual problem, are
always, by construction, in complementary discards with the current admissible basis solution. In
fact, considering that the problem in standard form has only equality constraints, the condition
𝑢𝑇(𝐴𝑥 − 𝑏) = 0 comes from the feasibility of the primal solution. For the condition 𝑥𝐵 = 𝐵−1𝑏 and
𝑥𝐹 = 0 in the basic solution, we have:

In other words, 𝑥 and 𝑢 are a pair of primal-dual solutions in complementary slackness and this holds
for each simplex iteration. We can therefore interpret the simplex in two ways:

- As a method that, at each step, determines an feasible primal solution and iteratively tries to
make it optimal

- As a method that, at each step, determines a dual solution (the multipliers) in complementary
scraps with a primal admissible solution and iteratively tries to make it dual admissible

In each case, at the end of the simplex we will have in hand a primal feasible solution and a dual
feasible solution to each other in complementary scraps (and thus optimal primal and dual
respectively).

- While running the simplex method, on the other hand, we will always have a pair of primal-dual
solutions that are in complementary slackness, but with only the primal admissible, and thus
the complementary slackness theorem does not apply except at the end of the simplex, when
all reduced costs are non-negative (which is equivalent to saying that the multipliers are a dual
admissible solution)

The reduced costs in simplex directly correspond to dual constraints:

- Negative reduced cost → violated dual constraint
- Non-negative reduced cost → satisfied dual constraint

134 MeMoCO Simple (for real)

Written by Gabriel R.

6.4 DUALITY EXAMPLE AND PROBLEM MODIFICATIONS

Let’s go through a complete example so you can understand how it works. Consider the following
problem:

We want to check whether the solution x = (3,2) is optimal by applying the complementarity
conditions.

- As a first step, it is necessary to test whether the solution is admissible by going to substitute
within the constraints the values of the solution

- If all the constraints are met, the solution is admissible
- For the solution to also be optimal, it is then necessary to find a complementary solution for

the dual problem:

We then need to find equations to put into system to find the dual solution.

- The constraint 3x1 +x2 ≥ 11 is already at equality with the solution x1 = 3 and x2 = 2, so it gives
no additional information

- Also x2 ≥ 2 is already equal with x2 = 2
- The constraint x1 ≥ 1 is not at equality and therefore, to make the complementarity condition

satisfied, the dual variable associated with the constraint must be zero.
o Therefore I derive u3 = 0

- Both primary variables are strictly greater than 0 and so I can impose the two equations
associated with the variables at 0: 3u1 + u3 = 2 and u1 + u2 = 3

The final system of equations I obtain is:

We’re not done yet, because to make sure it is optimal, we have to check if it’s feasible. In this case it
is, and therefore, that both primal/dual solutions are admissible and are complementary to each
other, then they are also both optimal.

Suppose we have found the optimal solution of a primal-dual problem with the procedure just seen.

135 MeMoCO Simple (for real)

Written by Gabriel R.

It may happen that the practical problem behind the model changes and it is necessary to find an
optimal solution for the new problem. Obviously, one does not want to re-optimize the problem, but
one wants to find out whether a solution for the new model is optimal. Suppose that the variable x3 is
added to the previous problem and that it appears in the objective function with coefficient 2.

The admissible solution given for this variant is the same as the previous one with x3 = 0. Since a
variable was added to the primary problem, the dual obtains a new constraint:

The previous dual solution does not change and remains feasible because it also satisfies the new
constraint.

In this case I also know that they are optimal, because the dual solution was constructed in a
complementary way, and the only thing that remains to be verified is that the complementarity also
holds for the newly introduced primary variable-dual constraint pair, which is satisfied because in the
solution x3 = 0.

It may happen, however, that the dual solution becomes infeasible. For example, if we add another
variable x5 to the problem:

The dual problem becomes:

If in the starting optimal primal solution we also add x5 = 0 we still get an optimal solution admissible
in complementary rejections with the dual one. The problem is that because of the new constraint, the
dual solution is no longer admissible. The only thing that can be done in this case is to perform a new
optimization. So: if a new variable (column) gets added to primal problem 𝑥, the solutions remains
optimal iff the dual solution 𝑢 satisfies the dual constraint.

136 MeMoCO Simple (for real)

Written by Gabriel R.

The fundamental insight is:

- Adding a column = Adding a dual constraint
- If dual solution violates new constraint = Column has negative reduced cost
- This means the column could improve solution

This leads naturally to column generation (which is the next theory module) because, instead of
having all possible columns/variables:

- We work with a subset
- Use current dual values (𝑢) to price potential new columns
- Only generate columns with negative reduced costs
- These are columns that could improve the solution

There is a specific example at the end of the slides (not treated in lessons – written by me below):

Let's define our variables: x1 = tons of type 1 scrap steel x2 = tons of type 2 scrap steel

We can write the constraints based on the requirements:

• Chromium: 3x1 + x2 ≥ 11 (need at least 11kg)
• Molybdenum: x2 ≥ 2 (need at least 2kg)
• Manganese: x1 ≥ 1 (need at least 1kg)
• Non-negativity: x1, x2 ≥ 0

The objective function (total cost) to minimize is: min z = 2000x1 + 3000x2

This is a linear programming problem. To solve part 1, we need to first verify if the current solution
(x1=3, x2=2) is optimal.

Let’s rewrite this as a linear program and solve it using duality theory:

min z = 2000x1 + 3000x2 s.t. 3x1 + x2 ≥ 11 (u1) x2 ≥ 2 (u2) x1 ≥ 1 (u3) x1, x2 ≥ 0

The dual problem is: max 11u1 + 2u2 + u3 s.t. 3u1 + u3 ≤ 2000 u1 + u2 ≤ 3000 u1, u2, u3 ≥ 0

137 MeMoCO Simple (for real)

Written by Gabriel R.

For x1=3, x2=2 to be optimal, we need to find dual variables that satisfy:

1. Dual feasibility
2. Complementary slackness conditions

The current solution x1=3, x2=2 satisfies all primal constraints:

• Chromium: 3(3) + 2 = 11 ≥ 11
• Molybdenum: 2 ≥ 2
• Manganese: 3 ≥ 1

Let's try dual values: u1=500, u2=2000, u3=500 These satisfy: 3(500) + 500 = 2000 500 + 2000 = 2500 ≤
3000

The objective values match: Primal: 2000(3) + 3000(2) = 12000 Dual: 11(500) + 2(2000) + 1(500) =
12000

Since we found feasible dual variables that make the objectives equal, the current solution is indeed
optimal. This verifies that the current strategy is the cheapest one.

For parts 2 and 3, we use similar analysis with the new variables/constraints:

Part 2: Adding two new variables makes new constraints but doesn't change optimality of current
solution because:

• For type 3 scrap (2kg Cr, 1kg Mn for 1500€), this gives better cost per unit but adds new
capacity. But optimal dual values show current solution remains optimal

• For type 4 scrap (2kg Cr, 1kg Mo for 4000€), cost is higher than type 2 scrap so won't improve
solution

Part 3: The new type 5 scrap (2kg each of Cr, Mo, Mn for 5500€) does change optimal strategy because
it can satisfy requirements with fewer tons needed, leading to lower total cost.

Therefore:

• Current strategy is optimal
• Strategy doesn't change with types 3 and 4 available
• Strategy does change with type 5 available

138 MeMoCO Simple (for real)

Written by Gabriel R.

Side note: the problem was presented a bit differently inside of Italian notes (here page 8 and
onwards).

To meet the demand for special steels, a manufacturing company needs 11 quintals of chromium, 2
quintals of molybdenum and 1 quintal of manganese. The market offers packages of two types. the
first contains 3 kilograms of chromium and 1 of manganese and costs 200 euros; the second contains
1 kilogram of chromium and 1 of molybdenum and costs 300 euros.

Currently, the company purchases 300 packs of type 1 and 200 packs of type 2. It is desired to:

1. verify that the company implements an optimal procurement policy;

2. assess whether the policy should be changed due to the availability of a third and a fourth type of
packages on the market. The third contains 2 kilograms of chromium and 1 of manganese and costs
200 euros. The fourth contains 2 kilograms of chromium and 1 of molybdenum and costs 400 euros.

3. consider whether the policy should be changed as a result of the availability on the market of a fifth
type of packaging, containing 2 kilograms of chromium 2 of molybdenum and 2 of manganese, at a
cost of 550 euros.

Note: the company is interested in knowing how the optimal supply policy is composed only
approximately and expressed in hundreds of packages. For this reason, the model can be expressed
by continuous variables and duality theory in linear programming can be applied.

Solution track: we first write the model of the problem. The variables are 𝑥𝑖: number of hundreds of
packages of type 𝑖 = 1. .2 to be purchased. Since we are interested in an approximate solution, we can
consider these variables continuous, rather than integer, as their nature would suggest.

Solving step 1 simply means checking the optimality of the solution 𝑥1 = 3, 𝑥2 = 2. The result is
positive: the policy is optimal.

To solve point 2, consider that the new opportunities result, from the primary point of view, in two new
variables. From the dual point of view, we have two new constraints (2𝑢1 + 𝑢3 ≤ 2, 2𝑢1 + 𝑢2 ≤ 4). It
should be noted that, given the addition of more constraints to the dual problem, the optimal solution
of the dual problem itself cannot improve but remain the same (if it does not violate the new
constraints) or get worse (if the old optimal solution violates the constraints). Thus, with the addition
of the two new dual constraints, two cases can occur:

- (a) The constraints are verified by the optimal dual variables obtained in Step 1
o Then the optimal dual solution does not change and, due to strong duality, neither

does the optimal solution of the primal, i.e., the addition of two new alternatives does
not affect the optimality of the policy currently adopted by the firm

▪ We achieve the optimal value of the objective function even if values of new
variables remain at 0

▪ It can be shown in this case that, if the dual constraints are satisfied, we are in
the presence of a primary admissible solution and a dual admissible solution in
complementary scraps, thus optimal solutions. You can find this in the Italian
notes above quoted

https://www.math.unipd.it/~luigi/courses/metmodoc1920/m03.ripassoDualita.pdf

139 MeMoCO Simple (for real)

Written by Gabriel R.

- (b) The constraints are not verified by the optimal dual variables obtained in step 1. So the
optimal dual solution changes and, in particular, having added additional constraints, it gets
worse, i.e., it decreases (dual objective function of max)

o Again due to strong duality, the value of the objective function of the corresponding
primal (the one with two new variables) will be equal to the new optimal value of the
dual, thus lower than before.

o As a result, the current policy could be improved by taking advantage of the new
packages offered by the market

▪ As alternative proof we would be in the presence of feasible primal solution in
complementary slackness with an unfeasible dual solution, i.e., the two
solutions are not optimal for their respective problems

Result: case (a).

The solution of point 3 is similar to point 2, with the outcome of having the policy adopted be not
optimal and should be changed.

140 MeMoCO Simple (for real)

Written by Gabriel R.

7 COLUMN GENERATION METHODS (6)

Let’s start by considering the following problem (tondini di ferro – iron rods):

7.1 AN INTERESTING PROBLEM: CUTTING RODS – MODEL AND SOLUTION

We have several ways of cutting this; we want to decide “how” to cut all of these pieces and how
many rods we want to cut with such technique. There are as many ways as the types of pieces to be
cut here, but also industrially we may have a limited number of cuts to be executed.

- The problem structure presents a fundamental challenge typical of column generation
applications: the number of possible cutting patterns (ways to cut the rods) is extremely large
and impractical to enumerate explicitly

- For example, even with just these five different lengths, there are numerous possible
combinations of cuts that could be made from an 11-meter rod while satisfying various piece
requirements.

The real value of this example lies in how clearly it demonstrates the core principle of column
generation: rather than dealing with an enormous number of variables upfront, we can work with a
manageable subset and generate additional variables (columns) only when they have the potential to
improve our solution.

141 MeMoCO Simple (for real)

Written by Gabriel R.

A possible model for the problem, proposed by Gilmore and Gomory in 1960 (see here) is the following
– consider there are so many ways to solve this problem, exponential even! You do not have enough
memory to create all of that for sure.

The model is very elegant since we do not worry about the feasibility constraints of the cuts, since the
matrix of possible combinations only contains the valid ones. There are still other things to note:

- It assumes the availability of the set 𝐽 and the parameters 𝑁𝑖𝑗
- In order to generate this data, one needs to enumerate all possible cutting patterns

o It is easy to realize that the number of possible cutting patterns is huge, and therefore
direct implementation of the above model is unpractical for real-world instances

- So, two problems – integer variables and matrix of the cuts which can be too big!

We remark that it makes sense to solve the continuous relaxation of the above model.

- This is because, in practical situations, the demands are so high that the number of rods cut is
also very large, and therefore a good heuristic solution can be determined by rounding up to
the next integer each variable 𝑥𝑗 found by solving the continuous relaxation

- Moreover, the solution of continuous relaxation may constitute the starting point for the
application of an exact solution method (for instance, Branch-and Bound – next module)

We therefore analyze how to solve the continuous relaxation of the model (𝑥𝑗 ∈ ℝ+). Such a solution
can be constructed as follows:

- Consider single-item cutting patterns, i.e., |𝐼| configurations, each containing 𝑁𝑖𝑖 = ⌊
𝑊

𝐿𝑖
⌋ pieces

of type 𝑖
o In words: given a rod, produce only a type of piece and get the max possible

- Set 𝑥𝑖 =
𝑅𝑖

𝑁𝑖𝑖
 for pattern 𝑖 (where pattern 𝑖 is the pattern containing only pieces of type 𝑖)

o In words, the number of times a pattern is applied is given rounding by excess the ratio
between piece request and number of pieces produced by the schema

https://www.researchgate.net/profile/Ralph-Gomory/publication/266478800_A_Linear_Programming_Approach_to_the_Cutting_Stock_Problem_I/links/5759753708aec91374a372d2/A-Linear-Programming-Approach-to-the-Cutting-Stock-Problem-I.pdf

142 MeMoCO Simple (for real)

Written by Gabriel R.

So: start from a relaxed version of the problem using a subset of the cutting patterns, making a good
choice so to make sure there exists a feasible solution and cut off integrality constraints, since in
reality we might have production waste.

The same solution can be obtained by applying the simplex method to the model (simple, since it’s
without integrality constraints), where only the decision variables corresponding to the above single-
item patterns are considered (restrict to a subset of 𝐽). Here the relaxed version solved using simplex:

Consider now a new possible pattern (number 6), containing one piece of type 1 and one piece of type
5. We ask ourselves: does the previous solution remain optimal if this new pattern is allowed? As we
saw, we can answer a question like this by using duality or simplex theory (previous solution holds real
values – hence not allowed – let’s try to add then a pattern to try taking a better solution!)

- Recall that at every iteration the simplex method yields a feasible basic solution
(corresponding to some basis 𝐵) for the primal problem and a dual solution (the multipliers)
that satisfy the complementary slackness conditions

o The dual solution will be feasible only at the last iteration
- The new pattern number 6 corresponds to including a new variable in the primal problem, with

objective cost 1 (as each time pattern 6 is chosen, one rod is cut) and corresponding to the
following column in the constraint matrix:

This variable creates a new dual constraint. We then have to check if this new constraint is violated by
the current dual solution (𝑢𝑇), i.e., if the reduced cost of the new variable with respect to basis 𝐵 is
negative. The new dual constraint and also the dual solution of relaxed problem are the following:

Considering the dual solution corresponding to the current optimal solution 𝑢 = 𝑐𝐵
𝑇𝐵−1, we get 0.2 +

1 = 1.2 > 1, the new constraint is violated. This means that the current primal solution (in which the
new variable is 𝑥6 = 0) may not be optimal anymore (although it is still feasible).

143 MeMoCO Simple (for real)

Written by Gabriel R.

We can verify that the fact that the dual constraint is violated corresponds to the fact that the
associated primal variable has negative reduced cost:

It is then convenient to let 𝑥6 enter the basis, since it means there is room for improvement for the
primal relaxed solution. To do so, we modify the problem by inserting the new variable:

If this problem is solved with the simplex method, the optimal solution is found but restricted only to
patterns 1, . . . ,6.

- If a new pattern is available, one can decide whether this new pattern should be used or not by
proceeding as above (so: continue until an optimal relaxed solution not improvable is found)

- However, the problem is how to find a pattern (i.e., a variable; i.e., a column of the matrix)
whose reduced cost is negative (i.e., it is convenient to include it in the formulation)

- Problem is: which columns to choose, since the set is very big and those are not defined
explicitly (= not immediate to find a variable respecting this logic)

- Not only is the number of possible patterns exponentially large, but the patterns are not even
known explicitly! The question then is:

This question can be transformed into an optimization problem: in order to see whether a variable with
negative reduced cost exists, we can look for the minimum of the reduced costs of all possible
variables and check whether this minimum is negative:

Recall that every column of the constraint matrix corresponds to a possible cutting pattern, and every
entry of the column says how many pieces of a certain type are in that pattern. In order for 𝑧 to be a
possible column of the constraint matrix, the following condition must be satisfied:

144 MeMoCO Simple (for real)

Written by Gabriel R.

Then the problem of finding a variable with negative reduced cost can be converted into the following
ILP problem – basically, we transformed the solution into a partial problem, where we solve a different
subproblem using the knapsack problem:

In our example, if we start from the problem restricted to the five single-item patterns, the above
problem reads as:

The procedure described above can be generalized to an algorithm for one-dimensional cutting-stock
problems, where the strategy is based upon continuous relaxation and application of a rounding
heuristic.

145 MeMoCO Simple (for real)

Written by Gabriel R.

7.2 ALGORITHM FOR THE 1D-CSP

Step 0 – Initialization

Choose a subset 𝐽′ of the cut patterns, such that the problem admits solution (feasible). An example
of a subset is given by all the mono-cut schemes (e.g., 𝑐𝑎𝑟𝑑(𝐼) for single-item patterns).

Step 1 – Solving the master problem

Solve the master problem, considering only the previously defined subset of patterns. This results in
an primal optimal solution 𝑥∗ and a corresponding optimal dual 𝑢∗ solution, which is in
complementary slackness with 𝑥∗. This process can be done by simplex method.

Step 2 - Solving the sub-problem (slave problem)

Solve the slave problem (using the simplex method, to solve the primal problem) for determining the
column to be introduced (i.e., the optimal solution 𝑧∗ – a dual solution). The problem has variable
𝑐𝑎𝑟𝑑(𝐼) and only one constraint, thus obtaining the optimal solution.

146 MeMoCO Simple (for real)

Written by Gabriel R.

Step 3 - Optimality test (and heuristic solution to the starting problem)

If ∑ 𝑢𝑖
∗𝑧𝑖

∗ ≤ 1𝑖∈𝐼 , then STOP: 𝑥∗ is an optimal solution of the full continuous relaxation (including all
patterns in 𝐽). Otherwise, update the master problem by including in 𝐽′ the cutting pattern 𝛾 defined by
𝑁𝑖𝛾 = 𝑧𝑖

∗ (this means that column 𝑧∗ has to be included in the master problems constraints matrix)
and go to Step 1.

Finally, to go from the optimal solution of continuous relaxation 𝑥∗ to a heuristic solution (i.e., not
necessarily optimal but hopefully good) of the original problem (with integrality constraints), is
possible, alternatively to:

- Round up by excess the entries of 𝑥∗ (this is a good choice if these entries are large: 765.3 is
not very different from 766...); note that rounding down is not allowed, as we would create an
unfeasible integer solution

- Apply an ILP method (for instance Branch-and Bound) to the last master problem that was
generated; this means solving the original problem (with integrality constraints) restricted to
the only “good” patterns (those in 𝐽′) generated by the solution of sub-problems

In either case you lose the guarantee of the optimality of the solution, but you still get a reasonably
good solution.

7.3 COLUMN GENERATION METHODS FOR LP PROBLEMS

The idea developed above for the one-dimensional cutting-stock problem can be applied to more
general LP problems (NOT integer, at least directly) whenever it is not possible or convenient to list
explicitly all possible decision variables. This happens because of simplex theory.

Consider the following generic problem:

such that the number of variables/columns (𝑛) of 𝐴 is very large or not known a priori, the algorithm
becomes the following – let (𝐷) be the dual problem of (𝑃):

Step 0: Initialization

Find explicitly a (small) subset of columns of 𝐴 such that, if only these columns are considered, the
problem has a feasible solution. Let 𝐸 ∈ ℝ𝑚×𝑞(𝑞 ≪ 𝑛) denote this submatrix of 𝐴 s.t. it’s composed
only by the selected subset columns and let 𝑥𝐸 , 𝑐𝐸 be the corresponding vectors of variables and
costs in the objective function. It’s important the problem related to 𝐸 is limited and feasible.

147 MeMoCO Simple (for real)

Written by Gabriel R.

Step 1: Solve the Restricted Master Problem (RMP) obtaining 𝑥𝐸

𝑀 , 𝑢𝑀

A pair of feasible solutions and optimal primal-dual for MP is obtained, for example, using the simplex
method.

Step 2: Solution of the slave problem (sub-problem for the generation of a new column)

Find one or more vectors 𝑧 ∈ ℝ𝑚 satisfying the following conditions:

To ensure the efficiency of the algorithm, this step needs to be performed quickly, and to limit the
number of iterations, one may choose to generate more than one column at a time. In addition, the
algorithm to be applied varies from problem to problem.

148 MeMoCO Simple (for real)

Written by Gabriel R.

Step 3: Optimality test

If no vector 𝑧 from the previous step exists, then STOP: 𝑥 = [𝑥𝐸
𝑀

0
] is an optimal solution of the initial

problem (𝑃). If no new columns are found, this means there are no dual constraints violated and also
the dual solution is optimal.

Step 4: Iteration

Update the master problem by including in matrix 𝐸 one (or more) columns generated at Step 2; also
update the corresponding costs in 𝑥𝐸 and 𝑐𝐸. Go to Step 1 (so if new columns, add them back to the
original matrix). Note that as the algorithm execution continues, the problem (MP) may become too
complex, so you may choose to maintain a pool of active columns.

7.4 IMPLEMENTATION ISSUES – CONVERGENCE

The critical part of the method is Step 2, i.e., generating the new columns (solving slave problem). It is
not reasonable to compute the reduced costs of all variables 𝑥𝑗 for 𝑗 = 1, . . . , 𝑛, otherwise this
procedure would reduce to the simplex method. In fact, 𝑛 can be very large (as in the cutting-stock
problem) or, for some reason, it may not be possible or convenient to enumerate all decision
variables.

- It is then necessary to construct a specific column generation algorithm for each problem;
only if such an algorithm exists (and is efficient), can the method be fully developed

- In the one-dimensional cutting stock problem we transformed the column generation
subproblem into a reasonable ILP (Branch and Bound or dynamic programming). In other
cases, the computational effort required to solve the subproblem may be so high as to make
the full procedure unpractical (in general NP-Hard or just inefficient overall)

A column generation algorithm considers, at each iteration, a primal-dual pair of feasible solutions. In
order for Step 1 to be able to find such a pair, the master problem needs to be always feasible and
bounded.

- At the first iteration feasibility can be achieved by taking any feasible solution for (𝑃) and
including in 𝐸 only the columns corresponding to variables that take a strictly positive value in
this solution

- At the next iterations, if the method adds new variables, the new master problems will be
feasible because the initial variables will still be included in the model. Moreover, to ensure

149 MeMoCO Simple (for real)

Written by Gabriel R.

boundedness, one can impose box constraints, i.e., constraints of the type 𝑥𝑗 ≤ 𝑀, ∀𝑗 ∈ 𝐸
(where 𝑀 is a sufficiently large constant)

- In many cases such a value of 𝑀 can be easily determined (for instance, in the rod cutting
problem it is easy to find a safe upper bound 𝑀 on the number of rods needed) and introducing
them step by step to Step 4, boundedness is guaranteed

The convergence rate of column generation methods is guaranteed by the theory of the simplex
method, provided that the column generation subproblem can be solved by an existing exact
algorithm. However, from the practical point of view, convergence might be slow for several reasons
(we only mention some of them below).

- One issue is the following: if, at Step 4, a single variable is introduced, many iterations may be
needed before including all variables needed in an optimal solution of the original problem. To
overcome this problem, when possible include and find more than one new variable at every
iteration (so, find more columns at Step 2 to insert them into MP into Step 4)

- Another issue is the fact that, after some iterations, problem (RMP) will contain a large number
of variables, and therefore solving (RMP) may become very hard. One way of overcoming this is
the creation of a pool of non-active variables among all the variables introduced so far

In other words, the variables whose value has been zero for several iterations can be eliminated from
the model but kept in a pool. However, when doing this, one has to ensure that the elimination of
some variables does not make the problem infeasible.

- If this approach is adopted, at every iteration one can check if one of the columns already
generated but currently removed has negative reduced cost; only if this is false, a new variable
will be generated

- Some other problems, not covered here, are known as instability, tailing-off, head-in etc.:
dealing with this aspects is fundamental for the implementation of efficient column generation
methods (stabilized column generation)

The basic notion coming from the theory is the fact if we have integer variables, this does not work.
Even if we solve it to optimality with integer variables, we only solve the subproblem. To summarize:

150 MeMoCO Simple (for real)

Written by Gabriel R.

We solve the RMP by decomposition, since we solve the problem by linear relaxation to optimality
(1CSD). The RMP is a LP problem, but the SP (slave problem) has to be also fast enough to be solved. If
SP is a NP-Hard problem, perhaps the column-generation approach might not work.

Since we need only some variables (a subset), we would need to handle multiple variables and
remove inactive variables, generating poorer quality dual values (head-in) or having small
improvements over the o.f. value.

151 MeMoCO Simple (for real)

Written by Gabriel R.

8 SOLUTION METHODS FOR ILP – BRANCH AND BOUND AND

ALTERNATIVE FORMULATIONS (7)

8.1 BRANCH AND BOUND – DEFINITION OF THE PROBLEM

A generic ILP problem is presented this way.

We analyze in the following image the linear relaxation of the problem:

Note easily that: 𝑧𝑖 ≤ 𝑧𝐿. Infact, if 𝑥𝐼 is the optimal solution of (1) and 𝑥𝐿 is the optimal solution of (2),
then 𝑥𝐼 satisfies (2) constraints, while 𝑧𝐼 = 𝑐𝑇𝑥𝐼 ≤ 𝑐𝑇𝑥𝐿 = 𝑧𝐿. In the image:

- The orange shaded region represents the feasible region defined by the linear constraints
- The blue dots represent the integer feasible solutions
- The grey dots are integer points that lie outside the feasible region
- The axes form a grid, representing the integer coordinates

152 MeMoCO Simple (for real)

Written by Gabriel R.

Solving linear relaxation can be useful but not so easy; rounding needs other procedures in order to
work properly.

Solving the linear relaxation might be interesting, but not so easy. Let’s go better into the details of the
actual problem, with some visualizations coming from the actual lesson:

153 MeMoCO Simple (for real)

Written by Gabriel R.

Pure ILP are variables constrained to be integer, into the mixed variant we have also continuous
variable. The feasible region is made up by sets of real points satisfying the inequality (polyhedron)
having points for some variables.

One positive feature of set X is that it is discrete, so it allows usage of two fundamental concepts used
in solving Integer Linear Programming problems:

1. Divide et Impera (Divide and Conquer):

- The feasible region X is divided into p smaller subsets (X₁, X₂, ..., Xₚ)
- For each subset Xₖ, you solve a smaller problem to find zᵢ⁽ᵏ⁾ = max{c^T x : x ∈ Xₖ}
- The optimal solution zᵢ is then the maximum among all these subsolutions
- This is useful because smaller problems are often easier to solve than the full problem

2. Linear Relaxation:

- You remove the integer constraint (x ∈ Z⁺) and allow continuous values (x ≥ 0)
- This creates an easier-to-solve linear program (LP)
- The solution zₗ to this relaxed problem gives an upper bound on zᵢ (zᵢ ≤ zₗ)
- This is very practical because:

o LP problems are much easier to solve than ILP
o The bound helps in branch-and-bound algorithms
o If you're lucky, the LP solution might be integer anyway

These techniques are typically used together in branch-and-bound algorithms:

1. Start with the linear relaxation to get an upper bound
2. Use divide-and-conquer to partition the problem when the relaxation gives non-integer

solutions
3. Continue this process recursively, using the bounds to prune branches that can't contain the

optimal solution

154 MeMoCO Simple (for real)

Written by Gabriel R.

The method exploits the following observation:

The Branch-and-Bound method proceeds by partitioning 𝑋 into smaller subsets and solving the
problem max 𝑐𝑇𝑥 on every subset.

- This is done recursively, by further dividing the feasible regions of the subproblems in subsets.
If this recursion was to be carried out completely, in the end we would enumerate all integer
solutions of the problem

- In this case, at least two issues would arise: first, if the problem has infinitely many feasible
solutions, so the complete enumeration is not possible; second, even assuming that the
feasible region contains a finite number of points, this number might be extremely large and
thus the enumeration would require an unpractical amount of time

- The Branch-and-Bound algorithm aims at exploring only the “promising” areas of the feasible
region, by storing upper and lower bounds for the optimal value within a certain area and using
these bounds to decide that certain subproblems do not need to be solved

8.1.1 Complete Branch and Bound example

Consider the problem 𝑃0, where its feasible region (blue points) and the feasible region of its linear
relaxation (light blue quadrilateral) are represented here (arrow is optimization direction).

We are using a divide-et-impera approach: choose one of the fractional variables then divide the
problem into two subproblems. Based on the non-integer solution (3.75, 1.75), we can branch:

- For x₁: either x₁ ≤ 3 or x₁ ≥ 4
- For x₂: either x₂ ≤ 1 or x₂ ≥ 2

155 MeMoCO Simple (for real)

Written by Gabriel R.

This example shows how linear relaxation gives a fractional solution, necessitating branching to find
the optimal integer solution. The bounds help narrow down where the optimal integer solution must
lie.

The operation used here is branching so to take a solution; we did branching on variable 𝑥1. We can
represent the subproblems and the corresponding bounds by means of a tree, called the Branch-and-
Bound tree.

If we take the union of the points represented, we take back the original divided blue points. The
optimal integer solution of the problem is considered between the other optimal solutions. In
particular:

- x⁰ₗ ∉ LP(P₁) ∪ LP(P₂)
o The fractional solution (3.75, 1.25) is not feasible for either subproblem

- X(P₁) ∪ X(P₂) = X(P₀)
o The union of feasible regions of subproblems equals original problem's feasible region
o Therefore, z⁰ᵢ = max{z¹ᵢ, z²ᵢ}

156 MeMoCO Simple (for real)

Written by Gabriel R.

So, to summarize:

The only non-pruned leaf is (𝑃2), which therefore is the only active problem, and is represented below:

157 MeMoCO Simple (for real)

Written by Gabriel R.

So, to summarize:

Now we have the B&B-tree as the following, with active nodes as 𝑃3 and 𝑃4.

Active nodes are 𝑃3 and 𝑃4. Now once again we solve the linear relaxation of 𝑃3.

158 MeMoCO Simple (for real)

Written by Gabriel R.

We get summarizing the following B&B tree, showing the single active problem below:

Now we solve the linear relaxation of 𝑃4, determining there is no feasible solution in the linear
relaxation, therefore having 𝑃4 having no integer solution.

159 MeMoCO Simple (for real)

Written by Gabriel R.

8.1.2 Formal Description and Model

We give now a formal description. Consider the original problem and we want to find the current good
solution (incumbent solution) so to construct a proper Branch-and-Bound tree, removing all of the
non-active nodes.

Starting from the problem to be solved (𝑃0):

Now, consider the entire formulation of the Branch-and-Bound method:

Where floor or ceiling notations are used, it means values are rounded-down or rounded-up.

160 MeMoCO Simple (for real)

Written by Gabriel R.

8.1.3 Implementation Issues

There are many fundamental details to take care of in order to make a Branch-and-Bound method
efficient. Here we examine the following implementation issues.

- Solution of the linear relaxation of every node
o The linear relaxation of any node corresponds to the linear relaxation of the parent

node plus a single constraint
o If the relaxation of the parent node has been solved with the simplex method, we know

an optimal basic solution of the relaxation of the parent node
o By using a variant of the simplex method called “dual simplex method”, one can

efficiently obtain an optimal solution for the same problem with a new constraint
added (“incremental”) – this was present inside of older Italian notes here (online also)

o This feature allows for a fast exploration of the nodes of the Branch-and-Bound tree in
(M)ILP problems

We have a method able to exploit the linear relaxation of parent nodes but also for children nodes,
which is the dual simplex method and given the simple nature of Branch and Bound using it is not
really an issue.

- Selection of an active node
o Step 1 of the algorithm requires to select a node from the list of active nodes
o The number of nodes that will be opened overall depends on how this list is handled; in

particular, this depends on the criteria used to select an active node
o In fact, there are two conflicting targets to keep in mind when choosing an active node:

▪ Finding a (good) feasible integer solution as soon as possible
• This brings at least two advantages: an integer solution provides a lower

bound for the optimal value of the problem, and having a good lower
bound increases the chances of pruning some nodes by bound

https://www.math.unipd.it/~luigi/courses/metmodoc1920/m05.01.dualsimpl.pdf
https://or.stackexchange.com/questions/282/when-should-i-use-dual-simplex-over-primal-simplex

161 MeMoCO Simple (for real)

Written by Gabriel R.

• Furthermore, in the event that one needs to stop the algorithm before
its natural termination, we have at least found a (good) feasible solution
for the problem, though maybe not the optimal one

▪ Exploring a small number of nodes

The selection of the active node revolves around these strategies:

- Evaluation of feasible solutions
o In order to prune nodes by bound, good quality feasible solutions are needed
o For this reason, when designing a Branch-and-Bound algorithm we have to decide how

and when feasible solutions should be computed
o There are several options, among which we mention the following:

▪ Waiting for the enumeration to generate a leaf node whose linear relaxation
has an integer optimal solution

▪ Implementing a heuristic algorithm that finds a good integer solution before
starting the exploration

▪ Exploiting (several times during the algorithm, with frequency depending on the
specific problem) the information obtained during the exploration of the tree to
construct better and better feasible solutions

• E.g., by rounding the solution of the linear relaxation in a suitable way,
so that a feasible integer solution is obtained

In any case, the trade-off between the quality of the incumbent solution and the computational effort
needed to obtain it has to be considered.

- Stopping criteria
o The Branch-and-Bound method naturally stops when there are no active nodes left (all

closed/pruned). In this case, the current incumbent solution is an optimal integer
solution

o However, one can stop the algorithm when a given time limit or memory limit has been
reached, but in this case the incumbent solution (if any has been found) is not
guaranteed to be optimal

o Indeed, at any time during the construction of the Branch-and-Bound tree we know a
lower bound 𝐿𝐵 (given by the value of the incumbent solution), but also an upper

bound 𝑈𝐵, given by the maximum of all values 𝑧𝐿
(𝑘) of the active nodes: this value is an

optimistic estimation of the integer optimal value 𝑧𝐼 (meaning that 𝑧𝐼 ≤ 𝑈𝐵)

162 MeMoCO Simple (for real)

Written by Gabriel R.

o If the algorithm is stopped before its natural termination, the difference between the
value of the incumbent solution 𝐿𝐵 and the bound 𝑈𝐵 is an estimation of the quality of
the incumbent solution available

o For this reason, a possible stopping criterion might be to terminate the algorithm when
the difference between these two bounds is smaller than a given value (fixed in
advance), when we keep this difference “sufficient” given the quality of the solution

- Selection/choice of the branching variable
o There are several applicable options for the choice of the branching variable, but a

common one is to select the variable with the most fractional value, i.e., the variable
whose fractional part is the closest to 0.5

o In other words, we define 𝑓𝑖 = 𝑥𝑖
(𝑘)

− ⌊𝑥𝑖
(𝑘)

⌋, we choose ℎ ∈ 𝐼 𝑠. 𝑡. ℎ =

𝑎𝑟𝑔𝑚𝑖𝑛𝑖∈𝐼{min{𝑓𝑖, 1 − 𝑓𝑖}}

You can see at each iteration, more and more nodes are opening, which means there are more active
nodes (there may be memory issues), but this means we will find more solutions and possibly stop
before. The problem is already solved by CPLEX internally, but that’s also the reason why it has to be
licensed.

163 MeMoCO Simple (for real)

Written by Gabriel R.

In this case, the Branch and Bound method eventually converges up to a given point. This means
understanding which will be the most promising solution given the conditions of the problem.

Important

There is a section from 11 to 15 dedicated for the general principles of B&B as a combinatorial
optimization problem method which you can have a read to – but this is not part of the course unit
(and of course not asked inside of the exam). This is section 2.1 inside of the file.

8.2 ALTERNATIVE FORMULATIONS – POLYHEDRAL APPROACH TO LP

We identify a set of linear inequalities s.t. within the polyhedron we have feasible solutions. As a
benchmark we use the classical minimization problem in standard form, with a subset of variables
𝑥𝑖 such that 𝑥𝑖 ∈ 𝑍, ∀𝑖 ∈ 𝐼. The problem to consider is the following:

164 MeMoCO Simple (for real)

Written by Gabriel R.

We may have infinite many other formulations given a specific problem. This is to be represented by
the following representation:

So here, every formulation is every polyhedron inside of the feasible region. In MILP every problem has
a lot of formulations.

- Therefore it would be convenient to choose as the relaxation a polyhedron that is as close as
possible to the optimal integer solution, because smaller polyhedra (formulations) give better
bound

- There is to keep in mind that it is not always possible to determine whether one formulation is
larger or smaller than the other, because it may happen that neither contains exactly the other

165 MeMoCO Simple (for real)

Written by Gabriel R.

8.2.1 Example: Facility Location Problem and Better Formulations

Let’s consider the facility location problem:

The goal is to minimize the cost of reducing the total cost of opening of different facilities:

Each customers should be served by exactly one facility:

Customer 𝑗 can be served by facility 𝑖 if only if 𝑖 will be opened:

This can be modeled by linear constraints in at least two ways:

166 MeMoCO Simple (for real)

Written by Gabriel R.

The two formulations are equivalent, but the first requires more constraints. As the value of 𝑀 for the
second formulation we can use the number of users 𝑚, because the maximum value of the
summation is 𝑚 and having a minimum 𝑀 leads to good constraints.

But which of the two solutions is better to choose?

- In the end, we come always to the optimal solution anyway
- Typically the fewer constraints there are, the easier it is to solve the problem, but having so

many constraints can lead to a smaller polyhedron
- It can be verified that the first formulation is better, in the sense that it defines a smaller

polyhedron, because if (𝑥, 𝑦) satisfies the first formulation, this also satisfies the second
formulation

The constraints in Method 1 are called non-aggregated constraints (because they work on individual
relationships), those in Method 2 are called aggregated constraints (combine multiple relationships
into one constraint). Even if they enclose exactly the same points, the formulations differ in how they
handle the relationship between variables:

Key differences:

1. P1 uses individual constraints 𝑥𝑖𝑗 ≤ 𝑦𝑖 for each pair (𝑖, 𝑗) to ensure a user can only be served
by an open facility

2. P2 aggregates these into single constraints for each 𝑖, where 𝑀 is a large enough constant (in
this case 𝑀 = 𝑚 works)

167 MeMoCO Simple (for real)

Written by Gabriel R.

This proves that 𝑃1 is strictly contained in 𝑃2, making 𝑃1 a tighter formulation despite having more
constraints. A tighter formulation often provides better bounds for branch-and-bound, though it may
be computationally more expensive to solve due to the larger number of constraints.

Imagine now using the Branch and Bound method, solving the linear relaxation of the problem. This is
a special instance of the problem with 5 customers and 10 facilities.

Note: we do not consider the multi-period production in these examples (for time reasons, as it
seems).

168 MeMoCO Simple (for real)

Written by Gabriel R.

P1 Tree (First Formulation):

- Root node: 𝑧1(𝑃1) = 54.6
- Branching on 𝑦2 creates 2 children:

o Left (𝑦2 ≤ 0): Value 57 (relatively close to root)
o Right (𝑦2 ≥ 1): Value 55.6 (also close to root)

- Only 3 nodes total
- Small gap between parent and child bounds

P2 Tree (Second Formulation):

- Root node: 𝑧1(𝑃1) = 39.0
- Much weaker initial bound
- Required branching on multiple y variables:

o First on 𝑦2
o Then 𝑦3
o Then 𝑦4
o And so on...

- Total of 21 nodes
- Large gaps between parent and child bounds

The key insight is that the bounds in 𝑃1's tree are much closer to each other. When the bound at any
node is closer to the optimal solution (the incumbent), it allows for:

- Better decisions about which nodes to prune
- Fewer branches needed to reach integer solutions
- Earlier pruning of suboptimal branches
- Faster convergence to optimality

This explains why 𝑃1 only needed 3 nodes while 𝑃2 required 21 nodes - the stronger bounds in 𝑃1
allowed for more effective pruning and exploration of the search tree. The closer the bounds are to the
incumbent solution, the more powerful the branch and bound algorithm becomes at eliminating
suboptimal regions of the search space

This example clearly illustrates why having a tighter formulation (𝑃1) can be beneficial despite having
more constraints - it leads to stronger bounds and a more efficient B&B process, even though each
individual LP relaxation might be more expensive to solve. Given the representation is larger, it is not
so close to the integer points. The closer the bound is to the optimal solution, the easier that bound is
closer to an incumbent.

A formulation is considered better compared to another one when:

so, when the points of a polyhedron are all contained inside of another one, which can be determined
algebraically.

169 MeMoCO Simple (for real)

Written by Gabriel R.

This is to be represented by the following:

This means that even the problem formulation may be interesting from a computational point of view.

8.2.2 Convex Hull and Ideal Formulation

At the geometric level, however, it is possible to define the ideal formulation, that is, the one that is
geometrically best (alternatively – the formulation for 𝑋 whose continuous relaxation is as small as
possible with respect to set inclusion).

- Thus, the ideal solution is the convex hull of the feasible region, that is, the minimal convex set
containing the feasible-region (in Italian – “inviluppo convesso”) – see here

- A convex set 𝐶 is a set of points, such that ∀𝑥, 𝑦 ∈ 𝐶, the segment joining them is completely
contained in 𝐶 – smallest convex set that encloses all the points, forming a convex polygon

- All polyhedra associated with formulation are always convex sets

https://www.math.unipd.it/~luigi/courses/metmodoc1920/m06.pli.pdf

170 MeMoCO Simple (for real)

Written by Gabriel R.

Given a formulation 𝑃 = {𝑥 | 𝐶𝑥 ≤ 𝑑, 𝑥 ≥ 0} for 𝑋, since 𝑃 is a convex set containing 𝑋, we have that

𝑋 ⊆ 𝑐𝑜𝑛𝑣(𝑋) ⊆ 𝑃

Then 𝑐𝑜𝑛𝑣(𝑋) is contained in the feasible region of the continuous relaxation of every formulation of
𝑋. The following is a fundamental result in integer linear programming. It shows that there exists a
formulation for whose continuous relaxation is precisely 𝑐𝑜𝑛𝑣(𝑋).

171 MeMoCO Simple (for real)

Written by Gabriel R.

The Fundamental theorem of Integer Linear Programming says that given an (M)ILP (in the form of a
maximum), such that the matrix 𝐴 contains only rational values and the convex hull of the feasible
region is a polyhedron, that is, it can be expressed as {𝐶𝑥 ≤ 𝑑, 𝑥 ≥ 0}. We assume this theorem.

The impact on solving ILP with ideal formulations is given by the fact that solving an ILP (min/max) is
equivalent to solving the continuous relaxation of its ideal formulation (𝑐𝑜𝑛𝑣(𝑋)) with the simplex
method.

172 MeMoCO Simple (for real)

Written by Gabriel R.

Therefore, in principle, solving an ILP equivalent to solving a LP problem (with no integer variables) in
which the constraints define the ideal formulation. However, there are two major issues which make
integer linear programming harder than linear programming:

- The ideal formulation, in general, is not known, and it can be very difficult to find it
- Even in cases in which the ideal formulation is known, it is often described by a huge number

of constraints, and therefore problem (10) cannot be solved directly with standard LP
algorithms (such as the simplex method) – since 𝑐𝑜𝑛𝑣(𝑥) is NP-complete

Let’s consider another example: maximum weight matching.

173 MeMoCO Simple (for real)

Written by Gabriel R.

This formulation is not ideal, in general.

- If the graph is a triangle, every matching consisting of one edge is a maximum weight matching
of weight 1

- All solutions give 1
2

 giving a feasible solution which is a basic solution, but not an ideal

formulation

We can find a better formulation by adding “ad-hoc” inequalities, which will be obtained by exploiting
the structure of the problem.

174 MeMoCO Simple (for real)

Written by Gabriel R.

These inequalities are called odd-cut inequalities (below called “o.c.i”), since at least one edge in the
cycle has to be selected and this means such cut off fractional solutions that would otherwise be
feasible in the LP relaxation (valid for any matching), making the formulation tighter to the extreme
points in general.

Theorem: 𝑃1 + odd cut inequalities is ideal

(therefore it would be sufficient to solve its continuous relaxation to find the optimum of the integer
problem)

- However, the number of constraints is exponential (there are 2|𝑉|−1 subsets of 𝑉 with odd
cardinality) and it is therefore practically impossible to solve the relaxation

o Even for a graph with just 40 nodes, there are more than 500 billion (500 ∗ 109) odd-cut
inequalities

- A better strategy is to solve a sequence of linear relaxations, starting from problem (12) and at
every iteration adding one or more odd-cut inequalities that exclude the current optimal
solution, until an optimal solution of the integer problem is found

- This idea is discussed in the next section (with a more general framework)

175 MeMoCO Simple (for real)

Written by Gabriel R.

When we have an Integer Linear Programming (ILP) problem, we often face a situation where:

- There are too many potential constraints (like said above)
- Including all these constraints upfront is computationally impossible

Row generation is an approach where:

- We start with a basic formulation (shown as the yellow region in the image), which is a subset
of constraints

- We identify violated inequalities (rows/constraints)
- We add these constraints one at a time solving the relaxed problem
- Check if the solution violates any of the omitted constraints and if violations are found, add

("generate") those constraints and repeat
- This gradually tightens the formulation towards the convex hull (blue region)

Outcomes by this:

- We're trying to approach the ideal formulation (convex hull of integer solutions)
- The convex hull would give us the tightest possible LP relaxation
- But describing it completely is usually impractical
- Row generation gives us a practical way to get closer to it

The golden arrow in the image suggests the direction of improvement – we're trying to shrink the
relaxation (yellow) toward the convex hull (blue) by adding strategic cuts.

This leads to the Cutting Plane Approach:

- Solve the LP relaxation
- If the solution 𝑥∗ is not integer:

o Find a valid inequality that is violated by 𝑥∗
o Add this inequality as a "cut"
o Re-solve the LP

- Repeat until we get an integer solution or can't find more cuts

The key advantages are:

- We avoid dealing with exponentially many constraints upfront
- We only generate constraints that are actually needed
- Each iteration makes the formulation tighter
- We can often solve large problems that would be impossible to handle if we included all

constraints initially

This approach is particularly powerful because:

- It's more efficient than enumerating all constraints
- It can be combined with branch-and-bound (leading to branch-and-cut)
- Many problems have efficient separation procedures to find violated inequalities

Row generation is used do deal with known families of valid inequalities, while cutting plane method
find new inequalities, adding cuts valid for integer solutions.

176 MeMoCO Simple (for real)

Written by Gabriel R.

8.3 CUTTING PLANE METHODS

The idea behind the cutting plane methods (“metodi dei piani di taglio”) is to solve a sequence of
linear relaxations that approximate better and better the convex hull of the feasible region around the
optimal solution. Cutting planes strictly improve formulations of 𝑋!

Consider more formally we want to solve the following ILP:

A valid inequality does not cut off valid points:

Basically, it is a constraint that is satisfied by ALL feasible integer solutions of your original problem,
even if it's not part of your initial formulation. Think of it as a "hidden rule" that you discover.

A cut separates the convex hull from 𝑋 (so to cut away non-feasible solutions):

The general method given below is a general framework for tackling integer linear programming
problems, but in order to implement it one needs an automatic technique to find valid inequalities
that cut off the current solution.

177 MeMoCO Simple (for real)

Written by Gabriel R.

As said above – this method works like this:

- You solve the LP relaxation (ignore integer constraints)
- If you get a fractional solution 𝑥∗, you try to find a valid inequality that:

o Is satisfied by all feasible integer solutions
o It is violated by your current fractional solution 𝑥∗

- This inequality "cuts off" the fractional solution while keeping all integer solutions.
- Add this cut to your problem and resolve
- Repeat until you get an integer solution

The term "cutting plane" comes from the geometric interpretation:

- The new inequality is like drawing a line (plane in higher dimensions)
- This line "cuts off" part of your feasible region
- Specifically, it cuts off the current fractional solution
- But it doesn't cut off any integer solutions you care about

The decomposition idea appears because we're essentially breaking the problem into two parts:

- MASTER PROBLEM:
o The LP relaxation we keep solving
o Gets progressively tighter with each cut

- SUBPROBLEM:
o The separation problem of finding violated inequalities
o Functions as a "cut generator"

The decomposition is natural because:

- It's often easier to solve these two parts separately
- The separation problem (finding cuts) might have a special structure we can exploit
- We can develop specialized algorithms for each part

This method is powerful because it dynamically generates only the necessary constraints, rather than
starting with all possible constraints upfront.

There are issues however:

- The major challenge is how to systematically find valid inequalities that cut off fractional
solutions. This isn't trivial because:

o There could be many possible valid inequalities
o We need an efficient way to identify which ones are helpful
o We need to ensure they're actually valid for all integer solutions

- We need to know if and when the algorithm will stop. This relates to:
o Whether we can keep finding useful cuts
o Whether we'll reach an integer solution in finite time
o The theoretical guarantee that the process converges (convex hull is a polyhedron)

It is clear that the above method is a general framework for tackling integer linear programming
problems, but in order to implement it one needs an automatic technique to find valid inequalities
that cut off the current solution. Below, we give a possible technique to do this.

178 MeMoCO Simple (for real)

Written by Gabriel R.

8.3.1 Gomory Cuts

Gomory cutting plane method can be applied only to pure ILP problems – all variables integer/all
constraints linear – (although there are extensions to the mixed integer case) and done to simplify
pure ILP or inequalities (not restrictive). Thus we consider the problem:

Solve the continuous relaxation with the simplex method, thus obtaining the problem in tableau form
with respect to an optimal basis 𝐵 (where below, 𝑁 is the set of indices of the non-basic variables):

If the right hand side is fractional (not integer), we can create a cut satisfying any integer solution and
cutting off the current fractional solution.

179 MeMoCO Simple (for real)

Written by Gabriel R.

Note that every vector 𝑥 satisfying the linear equation system 𝐴𝑥 = 𝑏, 𝑥 ≥ 0 also satisfies:

The inequality (15) is a Gomory cut, since it is a valid inequality for 𝑋.

- It examines a fractional solution from the simplex method and creates a new constraint that
removes this fractional solution while keeping all valid integer solutions

- It does this by exploiting the fact that if all variables must be integer, then certain
combinations of these variables must also result in integer values

o When we find a fractional value in our solution, we can create a constraint that
essentially says "this combination must be integer" which cuts off our current
fractional solution but preserves all true integer solutions

In simpler terms:

- Start with a linear relaxation of an integer program
- Solve it using simplex method
- If we get a fractional solution, we want to cut it off

This is how it works:

- When we have a simplex tableau with fractional basic variables:
o Pick a row where the right-hand side is fractional
o Round down all the coefficients to have all left side integer and floor to be the largest
o From this row, create a new inequality that:

▪ Must be satisfied by all integer solutions
▪ Is violated by the current fractional solution

- If you have a constraint like:

𝑥1 + 2.7𝑥2 = 3.4

- The Gomory cut would say: "Since 𝑥1 and 𝑥2 must be integer, the left side must be integer too"
- So we can create a cut like:

𝑥1 + 2𝑥2 ≤ 3

180 MeMoCO Simple (for real)

Written by Gabriel R.

This cuts off the fractional solution but keeps all integer solutions.

- It's called a "cut" because it cuts off part of the feasible region of the LP relaxation while
preserving all integer solutions – inequality is “valid”, so satisfied by any integer solution

- Think of it as adding constraints that enforce "integrality" by using the fractional parts of the
current solution to generate new constraints, in a systematic way (generated by tableau)

There is an implementation issue to be solved to integrate Gomory cuts into the cutting plane
procedure – transform this problem into an equivalent form adding a slack variable, which must be
integer.

181 MeMoCO Simple (for real)

Written by Gabriel R.

We thus obtain a new problem in the right form where the variable is basic but negative, so given
simplex rules, we would need to continue iterating.

So: the Gomory fractional cut comes in when we try to make the original Gomory cut more
computationally efficient – add a slack variable/subtract the original tableau equation and get the
fractional cut.

- This is good since it’s already in the right form to be added inside of the tableau and also the
coefficients are small (just the fractional parts), with the slack variable leaving the basis first
for the dual simplex

- This makes the cut more numerically stable and easier to work with while maintaining its
cutting properties

182 MeMoCO Simple (for real)

Written by Gabriel R.

In summary – given any problem:

- We can solve it with simplex method: if feasible good, otherwise, we apply a Gomory cut (take
the floor of everything and is a cut since violated by current solution)

- Iterate this method thus obtaining an integer solution

Gomory cuts provide a systematic way to solve pure integer linear programs by iteratively solving LP
relaxations with the simplex method, and whenever we get a fractional solution, we generate a valid
inequality (cut) from the tableau that is guaranteed to remove this fractional solution while preserving
all integer solutions; we then resolve using dual simplex (which is efficient here due to the structure of
the cuts) until we eventually obtain an integer solution.

8.3.2 Complete Example

Consider the following problem/example (before you attack me since this is a “collection of images”
as other ungrateful people have done overtime (a few, but present) – this was done in 5 minutes in
lesson, so the best thing is to combine prof. notes in all forms – be thankful given the file
completeness, instead reach me in case of feedback):

183 MeMoCO Simple (for real)

Written by Gabriel R.

Transform the problem into standard form adding slack variables and have it into pure ILP form:

184 MeMoCO Simple (for real)

Written by Gabriel R.

185 MeMoCO Simple (for real)

Written by Gabriel R.

186 MeMoCO Simple (for real)

Written by Gabriel R.

Let me break down this example step by step:

1. Initial Problem:

min z = -11x₁ - 4.2x₂

-x₁ + x₂ ≤ 2

8x₁ + 2x₂ ≤ 17

x₁, x₂ ≥ 0 integer

187 MeMoCO Simple (for real)

Written by Gabriel R.

2. First Step - Standard Form:

- Add slack variables x₃ and x₄
- Convert to equalities
- Get initial tableau through simplex method
- Find optimal solution: x₁ = 1.3, x₂ = 3.3 (NON-INTEGER!)

3. First Gomory Cut:

- From equation x₂ + 0.8x₃ + 0.1x₄ = 3.3
- Generate cut x₂ ≤ 3
- Feasible region gets smaller (see first cut in diagram)

4. Add Cut in Fractional Form:

- 0.8x₃ - 0.1x₄ + x₅ = -0.3
- Add to tableau
- Solve with dual simplex (x₅ leaves, x₃ enters)
- Get new solution: x₁ = 1.375, x₂ = 3, x₃ = 0.375 (still fractional!)

5. Second Gomory Cut:

- From x₃ + 0.125x₄ - 1.25x₅ = 0.375
- Get x₃ - 2x₅ ≤ 0
- Translates to x₁ + x₂ ≤ 4 in original variables
- Add to tableau in fractional form

6. Final Steps:

- Continue process
- Eventually reach integer solution x₁ = 1, x₂ = 3
- This is optimal for original problem with z = 23.6

The example shows how each Gomory cut progressively restricts the feasible region until we reach an
integer solution, while the dual simplex method efficiently handles the new cuts at each iteration.

188 MeMoCO Simple (for real)

Written by Gabriel R.

In the end: using rational coefficients leads to convergence in finite iterations. This is demonstrated in
the example where each cut (x2 ≤ 3, x1 + x2 ≤ 4, 2x1 + x2 ≤ 5) progressively tightens the feasible region
until reaching the integer optimum (x1 = 1, x2 = 3).

Advantages:

1. Converge to integer optimum - The example clearly shows this, converging to integer values
after 3 cuts

2. Quite simple 'find' (cut separation) procedure - Each cut is mechanically derived from
fractional values in the tableau

Issues:

1. Maybe many (!!) iterations – While this example took only 3 cuts, larger problems could require
many more

2. Numerical stability ('smooth' vertices) – The example shows increasingly complex fractions in
the tableaus (like 17/15, 29/15), highlighting potential numerical issues

Remark:

- Can be generalized to “Gomory mixed integer cuts” for MILP

Side note: the other notes for this course present the branch-and-cut, which essentially merges
branch and bound and cutting planes where:

- You start with continuous relaxation and add cutting planes
- You apply branch-and-bound
- You can add more cuts at each node of the branch-and-bound tree

The idea is that you can combine both approaches in various ways:

- Adding cuts only at the beginning
- Adding cuts before branching
- Adding cuts throughout the branch-and-bound process

189 MeMoCO Simple (for real)

Written by Gabriel R.

9 COVER INEQUALITIES (8)

Understanding how cutting planes strengthen formulations is central to modern optimization. When
we work with integer programming problems, we're often dealing with their linear relaxations –
continuous approximations of discrete feasible regions. The quality of these relaxations directly
impacts solution efficiency. This is important since:

- The convex hull of integer solutions represents our ideal: it's the tightest possible continuous
relaxation we could hope for. Any valid integer solution lies within this hull, and its boundaries
precisely define the space of feasible solutions. However, explicitly describing the convex hull
is usually impractical due to the potentially enormous number of constraints needed

- Cuts that belong to the convex hull, so to help describe facets of the convex hull of integer
solutions. When added to the linear relaxation, these cuts help make the relaxation tighter and
closer to the integer polytope.

- Cuts not belonging to the convex hull may still be valid and useful but don't necessarily
correspond to facets of the convex hull. These include specialized cuts depending on the
problem nature, called customized cuts:

o Non-aggregated cuts
o Cover inequalities (for knapsack problems)
o Facility location specific cuts

So basically: what happens when we decide to stop after a certain number of iterations or X cuts?
Maybe we will find better formulation, from where to start the better formulation/resolution. This is
what the solvers do. So: problems might have different constraints.

Can we put together these two things in a convenient way? Yes. Modern solvers don't attempt to add
all possible cuts – doing so would be computationally prohibitive. Instead, they employ sophisticated
strategies to:

- Identify the most violated inequalities
- Select cuts that provide the greatest improvement in bound quality
- Balance the strengthening effect against the computational overhead
- Recognize when additional cuts yield diminishing returns

190 MeMoCO Simple (for real)

Written by Gabriel R.

9.1 COVER INEQUALITIES FOR THE KNAPSACK PROBLEM

Recall the knapsack problem:

The feasible region of the continuous relaxation, given by constraints (2)–(3), is usually much larger
than the ideal formulation. It is then reasonable to introduce inequalities to strengthen the
formulation: these inequalities must be satisfied by all the integer solutions but should hopefully yield
a continuous relaxation closer to the ideal formulation.

The formulation is not ideal, however, since we get non-integer solutions out of this. We may decide to
run, for example, the Branch-and-Bound method directly or improve the formulation if possible.

Assume we can apply cutting plane methods (aka Gomory cuts application); can we find a deeper cut
(based on deeper reasoning of the problem).

Any possible integer solution in the knapsack problem satisfies the example inequality; to cut it away,
we must apply constraints over the sum, using better formulation principles (= cut away fractional
value). Of course, value (=meaning we cut away more) depends on the problem reasoning. Here we
show the formulation is not integer.

191 MeMoCO Simple (for real)

Written by Gabriel R.

So, this ideas can be applied this way, defining the concepts of cover and cover inequality:

Cover inequalities are a subset of cutting planes tailored specifically for binary ILP problems.

The cover inequality is valid for 𝑋. Equivalently, given the cardinality of the variables (|𝐶|), the
inequality is equivalent to:

If all possible cover inequalities are added to the original formulation of the knapsack problem, we
obtain better formulation.

- However, it can be shown that this is not the ideal formulation yet. This is a better formulation
for sure, but definitely we might not get the convex hull

192 MeMoCO Simple (for real)

Written by Gabriel R.

Unfortunately, the number of cover inequalities is exponentially large, as in the worst case there is one
cover inequality for every non-empty subset 𝐶 of {1, . . . , 𝑛}

- Even though in most practical cases only some of the subsets of {1, . . . , 𝑛} are actually covers,
the number of covers is too large. The idea is then to add dynamically the cover inequalities
only when they are really needed, adding to the original formulation

Question: Is it worth applying to cover inequalities?

- Yes, we solve the linear relaxation and find one of the cover inequalities
- Even adding all of the cover inequalities, we have no guarantee to be in the convex hull (with

Gomory cuts we have this guarantee)
- With Gomory cuts, thanks to the rounding down, separation procedure is trivial
- Here, we have to formalize it, forming an optimization problem

9.2 SEPARATION PROCEDURE

These inequalities are much faster than usual inequalities; if we were able to find them, we can add
them instead of Gomory cuts. Violated inequalities would take much more time (aka – exponential).
That’s why we would need to add the separation procedure. Can we find this for odd cut inequalities
and find the most violated inequality?

To do so:

- Suppose that we have solved the continuous relaxation (1)–(3) (for instance with the simplex
method), thus obtaining a solution 𝑥 that is not an integer vector

- We want to verify if there is a cover inequality violated by 𝑥, with the purpose of adding this
inequality to the formulation and solving the new linear programming problem

- The problem of finding a cover inequality violated by 𝑥, or deciding that none exists, is the
separation problem for the cover inequalities. Note that since the number of cover inequalities
is exponentially large, we cannot simply enumerate them and look for a violated one

Deciding if there is a cover inequality violated by 𝑥 means deciding if there exists a subset 𝐶 ⊆

 {1, . . . , 𝑛} such that:

The decision variable is the subset, which is binary since the item is present in the knapsack we have
1, otherwise 0. The set of items to be selected must be a cover (capacity of knapsack plus 1):

193 MeMoCO Simple (for real)

Written by Gabriel R.

We have the subset to be a cover and more over the corresponding constraint has to be violated. This
means the following sum has to be as small as possible, possibly less than 1:

The constraints ensure that the 𝑧𝑖 variables define a cover. Given the optimal integer solution 𝑧 of the
problem, is the optimal value is smaller than 1, then the cover inequality defined by the optimal
solution is violated by 𝑥. Otherwise, if the optimal value is ≥ 1, then there is no cover inequality
violated by 𝑥.

We can then decide if there is a cover inequality violated by 𝑥 (and find it) by solving the integer linear
programming problem (5)–(8). Note that this problem is very similar to the original knapsack problem
(1)–(4), and therefore it would probably be better to solve directly the original problem rather than
solving a similar problem just to find a new inequality to include in the formulation (and then iterate
this procedure!). Nonetheless, we will see below that this approach is much more promising in more
general situations.

194 MeMoCO Simple (for real)

Written by Gabriel R.

If the equality is greater than 1, no violated covers are present. Find the inequality that violates the
most the cover.

Let’s integrate such separation procedure by decomposition by integrating it into a cutting plane
procedure:

It can be interesting to restrict the execution time then use Gomory cuts to make the procedure faster.
Or even, use the same formulation then add Branch-and-Bound. Note that this problem is very similar
to the original knapsack problem (1)–(4), and therefore it would probably be better to solve directly the
original problem rather than solving a similar problem just to find a new inequality to include in the
formulation (and then iterate this procedure! This adds the same complexity into the same problem.

9.3 COVER INEQUALITIES FOR GENERAL BINARY PROBLEMS AND GENERAL PROCEDURE

where 𝐴 ≥ 0.

- A crucial observation is that every single constraint of the system 𝐴𝑥 ≤ 𝑏 can be seen as a
knapsack-type constraint of the form (2)

- In other words, if we replace the system 𝐴𝑥 ≤ 𝑏 with any of its constraints, and remove all the
others, we obtain a relaxation of the problem that looks exactly like a knapsack problem

- It is then possible to add to the formulation the cover inequalities associated with each of the
knapsack problems obtained this way (i.e., removing all constraints but one)

195 MeMoCO Simple (for real)

Written by Gabriel R.

- The number of possible cover inequalities will be huge, but we can employ the approach
described above to add the inequalities only when they are really needed

Suppose that we have solved the continuous relaxation (9) – (11), thus obtaining a non-integer
solution 𝑥.

- For each knapsack problem obtained by removing all the constraints of the system 𝐴𝑥 ≤ 𝑏
except one, we ask ourselves whether there is a cover inequality violated by 𝑥

- To this purpose, it is sufficient to solve a problem of the form (5) – (8)
- If the optimal value of this problem is smaller than 1, then we have found a cover inequality

violated by 𝑥 that can be added to the formulation; otherwise there is no cover inequality
violated by 𝑥

- We can then solve the new continuous relaxation (including the cover inequalities that have
been added) and iterate this procedure until the current solution satisfies all cover inequalities

Basically, each inequality is a one-dimensional knapsack problem (NP-hard in its weak formulation) –
this is the following algorithm, represented in both ways:

The diagram shows a clear iterative process starting with a Master Problem (MP) defined as 𝑚𝑎𝑥 𝑐𝑇𝑥
over a feasible region 𝑃. When we solve this MP, we get a solution 𝑥∗ in 𝐸𝑛 space.

This solution then feeds into multiple subproblems. The diagram specifically shows their
mathematical formulation.

Once these subproblems are solved, they generate columns which are added back to the Master
Problem. The process then follows one of two paths:

- If new columns were found, we loop back to solve the enhanced Master Problem
- If no columns were found ("NO COLS"), we solve a final version of MP with and terminate

Add all possible cover inequalities, then get an improved formulation after some time.

196 MeMoCO Simple (for real)

Written by Gabriel R.

Now, we give the general cutting plane procedure:

You can always separate such knapsack problem once it has been found. With the above algorithm
we have to solve many problems of the form (5)–(8), which are integer linear programming problems
and therefore hard in general.

- However, problem (5)–(8) is one of the simplest ILP problems and therefore, although in
principle an exponential time might be needed to solve it, in practice an optimal solution can
be found in a reasonable amount of time

- As seen above, the algorithm terminates when the current solution does not violate any cover
inequality

o Note however that when this happens, 𝑥 might still be non-integer, because the cover
inequalities are not sufficient to describe the ideal formulation of the problem (which
is not known

- Of course it is possible to stop the algorithm before its natural termination if we think that the
inequalities that we have added are sufficient to give a good formulation of the problem. In
both cases, if 𝑥 is not integer, we can apply the Branch-and-Bound method

197 MeMoCO Simple (for real)

Written by Gabriel R.

- The fact that some cover inequalities have been added allows us to start from a better
formulation and usually makes the Branch-and-Bound method terminate in a shorter time

The procedure shown in the flowchart illustrates an iterative optimization process that starts with
solving a relaxed linear program (LP), then systematically strengthens it by adding cuts when
fractional solutions are found.

- The method continues in a cycle – solving the improved LP, checking if the solution is integer,
and either adding more cuts through separation procedures or terminating based on specific
criteria (like time limits or iteration counts)

- The process is guaranteed to converge to an optimal integer solution if the separation
procedures can provide an ideal formulation and no arbitrary stopping criteria are enforced

- This creates a powerful framework that bridges the gap between continuous and integer
solutions by progressively shaping the feasible region through strategically chosen cutting
planes – how to use them depends on the problem

9.4 HYBRID METHODS, EXERCISES AND CPLEX OUTPUT

The image presents two different but complementary approaches to solving integer linear
programming problems: Cut-and-Branch versus Branch-and-Cut. Let's understand what each does:

- Cut-and-Branch
o This is a sequential approach
o We start with our ILP, apply cutting plane methods (CP) to strengthen the formulation,

and then use this improved ILP as input for a branch-and-bound (B&B) procedure
o Think of it as "clean up first, then solve" - we strengthen our formulation upfront before

trying to find the integer solution

- Branch-and-Cut (right side)
o This shows a more integrated approach. Instead of separating the cutting and

branching phases, we apply cutting planes throughout the branch-and-bound tree. At
each node we can generate cuts based on the current solution

o The branching decisions create new subproblems where we can again apply cutting
planes

o Here the formulation is strengthened with valid inequalities and the B&B is applied

198 MeMoCO Simple (for real)

Written by Gabriel R.

The key insight noted at the bottom is crucial: While cutting planes take time to generate, they improve
our bounds, potentially reducing the total nodes we need to explore in the branch-and-bound tree.

Cutting plane approaches let us work with a single formulation instead of creating a potentially
massive branching tree.

- However, success hinges entirely on having separation procedures that can efficiently identify
violated inequalities

- The challenge lies in finding cuts quickly enough to justify avoiding branching, while ensuring
these cuts are strong enough to meaningfully improve the formulation

- This fundamental balance between speed of cut generation and strength of formulation
improvement determines whether cutting planes will outperform traditional branching
methods

We add here two things which might help on preparation – solving first the “exercises” (since this year
OPL was not done, I’m gonna answer only the two questions present).

1. In which cases a cutting plane method is sufficient to solve an ILP?

The cutting plane procedure alone can provide the ideal formulation of the problem, meaning that all
generated cuts lead to a polyhedron whose vertices are all integer solutions. This occurs when the
separation procedures can identify all necessary valid inequalities to describe the convex hull of
integer solutions. Additionally, no artificial stopping criteria (like maximum time or iteration limits)
should be enforced, allowing the method to generate all required cuts.

However, it's important to note that this is relatively rare in practice. Even for well-studied problems
like the knapsack problem, cover inequalities alone do not provide the ideal formulation, as
mentioned in the provided text.

199 MeMoCO Simple (for real)

Written by Gabriel R.

2. How can we improve the performance of the branch-and-bound method for ILP using cutting
planes?

The performance of branch-and-bound for ILPs can be improved using cutting planes through two
main approaches:

- The first approach is branch-and-cut, where we strengthen the initial formulation by adding
cutting planes before starting the branch-and-bound procedure

o This provides tighter bounds at the root node, potentially reducing the total number of
nodes that need to be explored in the branch-and-bound tree

- The second, more sophisticated approach is branch-and-cut, where cutting planes are

generated and added at each node of the branch-and-bound tree
o This continuously strengthens the formulation throughout the solution process,

providing tighter bounds at each node
o While this requires more computational effort to generate cuts at multiple nodes, it

can significantly reduce the total number of nodes that need to be explored, often
leading to faster overall solution times

In both cases, the key advantage comes from the improved bounds provided by the cutting planes,
which allow for more effective pruning of the branch-and-bound tree and consequently faster
convergence to the optimal integer solution.

We will now (lastly) discuss the OPL example of surgery rooms (seen here if you don’t remember),
which is important by the point of view of this course unit, since it allows us to understand the output
of a complex solution using a commercial solver like CPLEX.

200 MeMoCO Simple (for real)

Written by Gabriel R.

Different things can be noticed here:

- Customized cuts are applied for the sake of separation procedure – a lot of separators are
present internally

- For example they can be customized as you can see here

A lot of different cuts can exist:

You see that the linear relaxation cuts away important portions, coming exactly up to the right solution
– the best bound of linear relaxation is 604.75 (number of nodes is increasing and the bound stays the
same, so good):

It’s better for the bound to be a smaller number, which means I branched on the previous bound and
got a smaller value.

201 MeMoCO Simple (for real)

Written by Gabriel R.

10 FOR READING - IDEAL FORMULATIONS, ASSIGNMENT PROBLEM

AND TOTAL UNIMODULARITY (9)

Note: program was over before this. The professor did not dedicate much time to this, but in order to
wrap up properly everything, there are notes properly summarized on the non-relevant parts

In order to solve MILP problems, we need Branch-and-Bound, cutting planes or mixed techniques. Are
there cases in which we need simply the simplex method? This is possible when the vertices of the
linear relaxation are integer, meaning that the formulation is ideal.

We consider a minimization problem, with integrality requirements and a polyhedron associated to
linear relaxation. If formulation is ideal, the polyhedron is a convex hull, and all of these vertices are
inside of the feasible region. When does this happen?

We get the particular case of totally unimodular matrices, in which for each square submatrix,
determinant is either 0, 1, −1.

- Note that sub-matrices need not be composed of contiguous columns and rows. As a
consequence of this definition we have that every element of a totally unimodular matrix must
be 0, 1 or -1, because submatrices of 1 × 1 must also satisfy the condition on the determinant

Determinant can be computed with Laplace rule, making a cofactor expansion:

https://en.wikipedia.org/wiki/Laplace_expansion

202 MeMoCO Simple (for real)

Written by Gabriel R.

There is an important consequence to this:

When A is totally unimodular and b is an integer vector, all basic solutions of the system 𝐴𝑥 = 𝑏 are
integer-valued. This means the formulation is ideal - we don't need to explicitly enforce integrality
constraints. The proof of this relies on examining how basic solutions are constructed:

- For any basis B of A, the basic solution is given by xB = B⁻¹b, xN = 0
- Since B is a submatrix of a TU matrix, det(B) must be -1 or 1
- The elements of B⁻¹ can be expressed as ratios of determinants: (B⁻¹)ᵢⱼ = (-1)ⁱ⁺ʲ det(Bʲᵢ)/det(B)
- Since both numerator and denominator are ±1, B⁻¹ contains only integers
- Therefore, xB = B⁻¹b must also be integer when b is integer

A key theorem characterizes an important class of TU matrices: If a matrix A has only 0/1 entries with
at most two 1s per column, and its rows can be partitioned into two sets such that when a column has
two 1s, they occur in rows from different sets, then A is totally unimodular.

10.1 ASSIGNMENT PROBLEM

In a bipartite graph assignment problem, we aim to match elements from two sets while minimizing
total cost. The problem's incidence matrix is naturally totally unimodular due to its special structure.

- The incidence matrix of any bipartite graph is totally unimodular
- This follows from the key theorem about 0/1 matrices with at most two 1s per column, as the

rows can be partitioned into the two node sets of the bipartite graph
- Each column (representing an edge) has exactly two 1s - one for each endpoint, occurring in

different partitions of the nodes

Due to total unimodularity, all basic solutions to the assignment problem's LP relaxation are naturally
integer-valued, meaning we can solve the assignment problem using linear programming methods like
the simplex algorithm without explicitly enforcing integrality constraints.

203 MeMoCO Simple (for real)

Written by Gabriel R.

More on the problem modeling:

This formulation of the problem is ideal, so I can discard the integrality constraint on the variables and
thus I can solve the model using the simplex method. We also have that the obtained constraint
matrix is totally unimodular.

This matrix is called the (indirect) graph incidence matrix and is also valid for graphs that are not
bipartite. If the graph is bipartite, the incidence matrix is TU. To represent oriented graphs in this way
the matter is slightly different. I use −1 in the row for the starting node and +1 in the row for the ending
node. For a directed degree, the incidence matrix is always TU, even if it is not bipartite.

204 MeMoCO Simple (for real)

Written by Gabriel R.

A bipartite graph and its incidence matrix are shown below.

where 𝟏 denotes a vector whose components are all equal to 1.

10.2 TU MATRICES PROPERTIES AND OTHER PROBLEMS

Several fundamental properties preserve total unimodularity (TU). For a totally unimodular matrix 𝐴:

1. Row and column permutations preserve TU
2. Multiplication of rows/columns by -1 preserves TU
3. Matrix transposition preserves TU: AT is TU
4. Augmentation with identity matrices preserves TU:

1. (𝐴, 𝐼) is TU where 𝐼 is 𝑚 × 𝑚 identity matrix
2. [𝐴; 𝐼] is TU where 𝐼 is 𝑛 × 𝑛 identity matrix

The transportation problem naturally extends the assignment problem while maintaining totally
unimodular properties:

- Relaxes 1-1 matching to allow multiple units of flow
- Maintains bipartite structure between sources and sinks
- Supply/demand constraints preserve TU properties
- Integer-valued basic solutions when supplies/demands are integer

The network flow framework exploits a maximum flow structure:

- Given directed graph 𝐷 = (𝑉, 𝐴) with capacity constraints 𝑐:
o Flow variables 𝑥: 𝑥𝑢𝑣 represents flow on arc (𝑢, 𝑣)

- Conservation constraints:
o Flow-in equals flow-out at all nodes except 𝑠, 𝑡
o Matrix representation 𝐴(𝐷′)𝑥 = 0 where 𝐷′ includes 𝑠 − 𝑡 arc

- Capacity constraints: 0 ≤ 𝑥𝑢𝑣 ≤ 𝑐𝑢𝑣
- Matrix remains TU through property preservation
- Integer flows guaranteed when capacities are integer

The minimum cost flow has properties:

205 MeMoCO Simple (for real)

Written by Gabriel R.

- Combines flow conservation with arc costs
- TU property ensures integer flows with integer data
- Linear programming solution yields combinatorial optimality
- Polynomial-time solvability despite combinatorial nature

Also, there are circulatory properties

- Special case without source/sink nodes
- All flows must be conserved at every node
- TU properties ensure integer circulation values
- Applications in periodic scheduling and resource allocation

The power of these formulations lies in reducing combinatorial problems to linear programs while
maintaining integer solutions through total unimodularity. This enables efficient solution methods that
leverage continuous optimization for inherently discrete problems.

This theoretical foundation explains why certain network optimization problems remain tractable
despite their combinatorial nature, bridging the gap between discrete and continuous optimization
through matrix properties.

On the next part: the TSP cannot be formulated with a totally unimodular constraint matrix (as it's NP-
hard). However, certain TSP relaxations/subproblems relate to network flows:

- 1-tree relaxations can be found using max flow techniques
- Assignment problem relaxations (which are TU) provide bounds
- Subtour elimination constraints conceptually relate to flow conservation

206 MeMoCO Simple (for real)

Written by Gabriel R.

11 FOR READING - EXACT METHODS FOR THE TSP – MODELS AND

METHODS (10)

Note: The part of “Exact methods for the Traveling Salesman Problem” is considered “For reading”
this year of the course, so definitely not gonna touch that into notes

(From Moodle in case you might be interested there are the PDFs, otherwise if you’re like me, have a
look at the lesson in older Moodle courses. I will provide a helper summary in any case)

TSP arises in two main variants: asymmetric (ATSP) with directed arcs and symmetric (STSP) with
undirected edges. Both share the challenge of subtour elimination but require different solution
strategies due to their structural differences.

Asymmetric TSP Methods

Constraint Generation Approach

The method builds on a key insight: without subtour elimination constraints, ATSP reduces to an
assignment problem with totally unimodular constraints. This leads to an iterative process:

1. Initial Solution Phase:

- Solve pure assignment problem relaxation
- Obtain integer solution efficiently via simplex
- Identify any existing subtours

2. Constraint Addition:

- Add subtour elimination constraints only as needed
- Maintain integrality only on variables in these constraints
- Resolve increasingly constrained problems

3. Convergence:

- Process continues until obtaining Hamiltonian cycle
- Guarantees optimality through exhaustive constraint addition
- Often reaches solution before adding all possible constraints

Branch-and-Bound Strategy

This alternative approach exploits problem structure differently:

1. Relaxation Mechanism:

- Uses assignment problem as base relaxation
- Obtains valid lower bounds efficiently
- Identifies subtours for branching decisions

https://stem.elearning.unipd.it/mod/kalvidres/view.php?id=440355

207 MeMoCO Simple (for real)

Written by Gabriel R.

2. Branching Strategy:

- Selects a subtour in current solution
- Creates branches by prohibiting arcs from this subtour
- Implements prohibitions through cost modification (setting to infinity)

3. Tree Management:

- Maintains problem structure through modified costs
- Avoids explicit constraint handling
- Allows efficient node processing via assignment algorithms

Symmetric TSP Innovations

Advanced Relaxation Methods

The symmetric case permits specialized approaches:

1. Linear Programming Relaxation:

- Works with edge variables (reducing problem size)
- Uses degree constraints as base structure
- Dynamically adds subtour elimination as needed

2. Separation Procedure:

- Converts constraint identification to network flow
- Efficiently handles fractional solutions
- Provides strong cutting planes

Efficient Constraint Generation

The method employs sophisticated separation:

1. Maximum Flow-Based Detection:

- Constructs capacitated network from current solution
- Identifies violated constraints through min-cuts
- Efficiently processes fractional solutions

2. Dynamic Implementation:

- Adds constraints iteratively
- Maintains problem tractability
- Focuses on most violated constraints

Branch-and-Cut: State-of-the-Art Integration

This combines the strengths of previous approaches:

1. Algorithmic Framework:

- Integrates LP relaxation with cutting planes
- Uses intelligent branching on fractional variables
- Inherits cuts through the branch-and-bound tree

208 MeMoCO Simple (for real)

Written by Gabriel R.

2. Implementation Features:

- Efficient linear programming solutions
- Strong valid inequality generation
- Strategic constraint management

3. Practical Performance:

- Solves million-node instances
- Provides provable optimality
- Manages memory and computation trade-offs effectively

4. Advanced Components:

- Multiple cut families beyond subtour elimination
- Sophisticated separation algorithms
- Adaptive cut management strategies

This framework represents the current pinnacle of exact TSP solution methods, successfully bridging
theoretical insights and practical computing limitations. Its success demonstrates how deep
understanding of mathematical structure can lead to effective algorithms, though significant
computational resources may still be required for large instances.

The field continues to advance through:

- New valid inequality classes
- Improved separation algorithms
- Enhanced branching strategies
- More efficient implementation techniques

To end this file – and also my Master/Bachelor notes, done for all courses up to now, below some
general interest links.

Optional reading: sample applications (free link from the Department network)

- Evolving Neural Networks Through Augmenting Topologies. (K.O. Stanley and R. Miikkulainen,
Evolutionary Computation)

- Data-driven matheuristic for the Air Traffic Flow Management Problem (L. De Giovanni, C.
Lancia and G. Lulli)

- A two-level local search heuristic for pickup and delivery problems in express freight trucking
(L. De Giovanni, N. Gastaldon and F. Sottovia, Networks)

http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
https://pubsonline.informs.org/doi/10.1287/trsc.2022.0309
https://pubsonline.informs.org/doi/10.1287/trsc.2022.0309
https://onlinelibrary.wiley.com/doi/full/10.1002/net.21917
https://onlinelibrary.wiley.com/doi/full/10.1002/net.21917

209 MeMoCO Simple (for real)

Written by Gabriel R.

12 LAST MEETING OF THE COURSE

12.1 FIRST PART – HYBRID METAHEURISTICS

As noted here, the last part of this course revolves around “hybrid metaheuristics” (see here). We
would need some basic formal ideas of mathematics in order to get a grasp of the presented
concepts. These tools can be “combined” which starts from the statement of the problem (data),
providing a good solution. Let’s hybridize then, using the techniques as follows (reading some papers
with them:

- We can try to use trajectory methods for example
- Or even use matheuristics – metaheuristics + math

o Exact methods to get information – then apply heuristics
o Problem-dependent elements are included only within the lower-level mathematic

programming, local search or constructive components

- Another interesting method might be kernel search (helping slides provided by Marsini,
researcher of UniTN)

o As present here by the abstract
▪ The central idea is to use some method, for example, the LP-relaxation, to

identify a subset (named kernel) of promising decision variables and then to
partition the remaining ones into buckets

▪ These are concatenated one at a time to the kernel in order to check whether
improving solutions can be found

Just to show – since they are internal of this course – some images coming from the presented slides.
The problem to be solved is this one:

https://en.wikipedia.org/wiki/Matheuristics
https://cris.unibo.it/handle/11585/832905

210 MeMoCO Simple (for real)

Written by Gabriel R.

Here there is the buckets construction:

- We can use information coming from available data to help with the solution process. Such is

called data-driven optimization
o Data-driven is to use data as a means of production of extracted features through

scientific methods and apply them to problems to be solved
o These methods have certain applicability and advantages in the research of supply

chain management
o Think about AI works, possibly as a way to learn from a part of your solution method
o See the professor paper to get a grasp much better than this

When there is a problem:

- Spend time to read literature and engineer properly a good method

12.2 SECOND PART – TALKING ABOUT THE EXAM

In this case:

- Homework is ready and given to the professor
- The professor has an idea of the score (between 0 and 10)

First part of the exam is discussion about the homework – if the student is able to justify the final score
of the exercise. Once with this, there are questions during the course classes.

This year, as noted above, just the definition of total unimodularity and forward. But please, know the
general ideas/definitions or the modeling parts for the TSP (last topic above).

Given the professor nature, you might know at this point questions are made of reasoning, not only
exact concepts. It’s more of a discussion with technical aspects. For example:

- In a column generation approach, can we use a heuristic method to solve the slave problem?
- Yes, slave problem has a negative reduced cost variable, then we apply heuristics; if no

negative cost variable was found, we cannot stop with linear relaxation, but using heuristics

https://pubsonline.informs.org/doi/epdf/10.1287/trsc.2022.0309

211 MeMoCO Simple (for real)

Written by Gabriel R.

12.3 THIRD PART – TALKING ABOUT THE EXERCISE

Provide a report (unique) for both parts:

- How the model was implemented (not reporting it exactly) but if there were problems/issues
on the formulation

On the first part of the exercise:

- Instances generation is important (something to take care of)
- We have TSP in a specific drilling context
- Instances should be coherent with that
- Random components should be present in this generation, depending on ways in which they

are generated
- For example, given the matrices sizes, holes are to be distributed uniformly at random

distances – this can be a good way, but maybe not the best way for electrical panels
- Holes have to be distributed with some structure (square/circles, shapes even)
- Perhaps this structure can help the finding of the solution of the TSP instance
- If specific choices are made, please, report them (for example, if you don’t have time to

implement wanted number of instances say it)

On the second part of the exercise:

- Any basic method is OK, but please consider adding things (Local Search with multistart, Tabu
Search with intensification, Genetic Algorithm hybridized with Local Search)

- The idea should be simple (but not so much – not basic)
- If you have doubts of any kind, the professor is definitely more than welcome to help you, so in

case of doubts, do it before the exam
- Professor is open to discussion

Please deliver the full zip with the parts by mail complete with:

- Code
- Report

The code MUST be compiled inside of the lab machines – before sending the exercise, make sure of
this. In case, provide him with instructions on how to execute.

Example: if exam is 30th of January, please deliver up until 27th – but professor may agree with you to
have a different date for both submission and examination.

If one delivers the project is outside the exam dates, you can do it whenever you want. Normally, the
oral exam is inside of the official date but is to be agreed individually with the professor (as always
happens, but anyway).

212 MeMoCO Simple (for real)

Written by Gabriel R.

13 LABORATORY 1 - SOLVERS FOR MATHEMATICAL PROGRAMMING

(DOCPLEX)

We start from the definition of a solver: a software application that takes the description of an
optimization problem as input and provides the solution of the model (and related information) as
output.

In particular, we’re interested in solvers which act on MILP problems, which are the most used in
practice:

• very efficient
• numerical stability
• easy to use or embed

They have had more than 1 000 000 000 speed-ups in the last 20 years, where thousands of variables
may be processed in order to express fast algorithms:

• hardware speed-up: x 1000
• simplex improvements: x 1000
• branch-and-cut improvement: x 1000

Examples may be: Cplex, Gurobi, Xpress, Scip, Lindo, GLPK, Google OR Tools etc.

The core of lab units is not to implement solvers, but solver interfaces, so to build the model and
simply call the software.

213 MeMoCO Simple (for real)

Written by Gabriel R.

A commercial software for which we have the license is IBM Ilog Cplex, which is one of the first MILP
solvers. Some general features:

- Includes state-of-the-art technology
- One of the best solvers available (Gurobi, Xpress)

A list of possible interfaces is the following:

- Interactive optimizer
- OPL / AMPL / ZIMPL … algebraic modelling language (close to writing models on paper)
- C – API libraries (Callable libraries)
- C++ libraries (Concert technologies)
- Python APIs
- Python (with docplex) / Java / .Net wrapper libraries
- Matlab / Excel plugins

We are introduce to a magical Python interface called DOCplex, which is not compatible with Python
3.9 above versions and has caused in the lab a lot of trouble to different people

Important note: this year, only Docplex was done, while up to now (before 24-25), only OPL was done.
So, even in the assignment, you will see that “Docplex Guys” are the “OPL guys” of previous years.

In any case, it’s pretty simple and I will share some general info:

• IBM Decision Optimization CPLEX Modeling for Python
• Built upon the Cplex Python APIs
• Exploits Python syntax to provide “easy” and flexible encoding of the mathematical model

notation, e.g.:
➢ Dictionaries for sets of variables
➢ for…in…if… to encode “forall” quantifiers or sum indices

• Ideal for prototyping and integration into “modern” applications
• Documentation: docplex landing pages

➢ https://pypi.org/project/docplex/
➢ https://ibmdecisionoptimization.github.io/docplex-doc/

▪ Getting started with Docplex
▪ Mathe Programming Modeling for Python using docplex.mp

• ◼ Installation, e.g.
➢ pip install docplex or
➢ conda install -c ibmdecisionoptimization docplex

https://pypi.org/project/docplex/
https://ibmdecisionoptimization.github.io/docplex-doc/

214 MeMoCO Simple (for real)

Written by Gabriel R.

13.1 MAKE DOCPLEX RUN!

A first crucial step for the PC in labs:

Inside of labs, it’s important to first enable the cplex environment variable, check the path existence
and then execute – we will infact use VS Code here:

In general, as said, it works with Python 3.9 - so:

- Uninstall later versions from Programs
- Before uninstalling, in case for cleanup also remove pip, by opening a terminal and “uninstall

pip” (or suggestions given from the prompt)
- Search for 3.9 and download: https://www.python.org/downloads/release/python-390/
- Quickly reinstall the magic “pip” from here: https://phoenixnap.com/kb/install-pip-windows
- (here he himself asks you to add to the path, tell him yes)
- Do “pip install docplex” (once you are sure that “pip” has been installed correctly)

When in doubt:

- Add in the PATH entry environment variables the path where Cplex is installed: C:\Program
Files\IBM\ILOG\CPLEX_Studio2211

- That way you can run a terminal by typing “cplex”
- When you run, everything works

215 MeMoCO Simple (for real)

Written by Gabriel R.

The following is a complete example with comments of all the things done in the lesson, based on the
Farmer model, object of the first lesson:

#DOcplex basic functions
from docplex.mp.model import Model

Creating an "empty" model
m = Model(name="Example model")

#Defining a variable
c_var = m.continuous_var()
i_var = m.integer_var()
b_var = m.binary_var()
#Variables can have optional arguments like: name, lb (lower bound), ub (upper bound)
#Default values are: name = x1, x2.. ; lb = 0; ub = +infinity

#Defining expressions: functions of decision and/or usual variables
expr_1 = 6 * c_var + i_var - pow(3,2) * b_var
expr_2 = 10 * c_var

#Creating a constraint
m.add_constraint(expr_1 <= expr_2) #or >= , ==

#Creating the objective function
m.minimize(expr_1) #or maximize

#Solving the model
m.solve()
#* Optional arguments:
- log_outputs = True | False
- cplex_parameters = ...
...*#

#Checking status of the solution (optimal, infeasible, unounded, ..)
if m.solution == None:
 print("Problems! Status: ", m.get_solve_status())

#Printing the solution:
if m.solution != None:
 m.print_solution() #standard info (status, o.f. and variables values)
 sol = m.solution
 print(sol[c_var]) #value of var c_var
 print(sol.get_objective_value()) #value of the o.f.

#Exporting the model
m.export_as_lp(basename='filename', path='path', hide_user_names=False) #text file (e.g., LP format)

#Exporting the solution in json format

216 MeMoCO Simple (for real)

Written by Gabriel R.

m.solution.export('filename')

#Exporting the solution in a string:
print(m.solution.to_string())

217 MeMoCO Simple (for real)

Written by Gabriel R.

14 LABORATORY 2 – SOLVERS: DOCPLEX (CONTINUATION)

Let’s start from the model we saw last time, so the farmer – given the problems about docplex, we
start from the same model:

The Python code is the following:

Starting from scratch, since in the last lab python 3.9 not present in labs conditioned the fact everyone
had problems.
docplex DOES NOT work for versions above

from docplex.mp.model import Model

m = Model(name="Farmer")

#Defining variables

xT = m.continuous_var(name="ht of tomatoes", lb=0) #lb=0 --> should be non-negative
xP = m.continuous_var(name="ht of potatoes", lb=0)

revenue = 6000 * xT + 4000 * xP #objective function
m.maximize(revenue)

m.add_constraint(xP + xT <= 11, ctname='land avail')
m.add_constraint(7*xT <= 70)
m.add_constraint(3*xP <= 18)
m.add_constraint(10*xT + 20*xP <= 145)

m.print_information()
m.export_as_lp('.') #exporting the model as a text file, where lp is the extension for linear programming
models

m.solve()

218 MeMoCO Simple (for real)

Written by Gabriel R.

Then, the actual file .lp file is:

\ This file has been generated by DOcplex

\ ENCODING=ISO-8859-1

\Problem name: Farmer

Maximize

 obj: 6000 ht_of_tomatoes + 4000 ht_of_potatoes

Subject To

 land_avail: ht_of_tomatoes + ht_of_potatoes <= 11

 c2: 7 ht_of_tomatoes <= 70

 c3: 3 ht_of_potatoes <= 18

 c4: 10 ht_of_tomatoes + 20 ht_of_potatoes <= 145

Bounds

End

We check the availability of the solution:

Checking the availability of the solution

if m.solution != None:
 m.print_solution() # print the solution
 print(m.solution(xT)) # press the value of xT

We have to generalize the way we create models, like the following optimal production mix:

219 MeMoCO Simple (for real)

Written by Gabriel R.

This way we can solve several problems and examples; it’s advisable to use dictionaries as structure
to represent multiple instances of data.

The complete code actually does basically the same things, but using dictionaries for the data and
also getting the status of the solution:

from docplex.mp.model import Model

#data
I = ['land', 'tomato seeds', 'potato tubers', 'fertilizer']
J = ['tomatoes', 'potatoes']

#Data parameters
D = {'land': 11, 'tomato seeds':70, 'potato tubers': 18, 'fertilizer': 145}
P = {'tomatoes': 6000, 'potatoes':7000}
Q = {("land", "tomatoes"): 1,
 ("tomato seeds", "tomatoes"): 7,
 ("potato tubers", "tomatoes"): 0,
 ("fertilizer", "tomatoes"): 10,
 ("land", "potatoes"): 1,
 ("tomato seeds", "potatoes"): 0,
 ("potato tubers", "potatoes"): 3,
 ("fertilizer", "potatoes"): 20}

m = Model(name="prod mix")

x = {j: m.continuous_var(name='x({0})'.format(j)) for j in J}

m.maximize(m.sum(P[j] * x[j] for j in J))

for i in I:
 m.add_constraint(m.sum(Q[(i,j)] * x[j] for j in J) <= D[i])

m.print_information()
m.export_as_lp(".")

m.solve()

if m.solution != None:
 m.print_solution()
 for j in J:
 print(m.solution[x[j]], "is the qty of product", j)
else:
 print(m.get_solve_status())

220 MeMoCO Simple (for real)

Written by Gabriel R.

If we change only a bit of the domain to try to solve the following problem, integer variables need to be
used, changing the sets a bit and the following:

In this case we also make checks upon the nature of the actual domain:

from docplex.mp.model import Model

Data ###
I = ['rose', 'lily', 'violet']
J = ['one', 'two']

Data: parameters ###
D = {'rose': 12.5, 'lily': 21, 'violet': 9}
P = {'one': 130, 'two': 100}
Q = {
 ('rose', 'one'): 1.5, ('lily', 'one'): 1, ('violet', 'one'): 0.3,
 ('rose', 'two'): 1, ('lily', 'two'): 2, ('violet', 'two'): 0.5
}
decision_domain = "integer"

Model
m = Model(name="prod mix")

if decision_domain == "integer":
 # Decision variables
 x = {j: m.integer_var(name=f'x_{j}') for j in J}
elif decision_domain == "continuous":
 # Decision variables
 x = {j: m.continuous_var(name=f'x_{j}') for j in J}

Decision variables
x = {j: m.continuous_var(name=f'x_{j}') for j in J}

221 MeMoCO Simple (for real)

Written by Gabriel R.

Objective function
m.maximize(m.sum(P[j] * x[j] for j in J))

Constraints
for i in I:
 m.add_constraint(
 m.sum(Q[i,j] * x[j] for j in J) <= D[i],
 ctname=f'Constraint_{i}'
)

Solve and print results
m.print_information()
m.export_as_lp('./prod_mix.lp')
solution = m.solve()

if solution:
 m.print_solution()
 for j in J:
 print(f"{x[j].solution_value:.2f} is the quantity of product {j}")
else:
 print("No solution found.")
 print("Solve status:", m.get_solve_status())

Now we go into the detail of the following model:

222 MeMoCO Simple (for real)

Written by Gabriel R.

The complete version of the code uses the shortcuts able to index the variables present inside of the
constraints so to create a coherent model:

from docplex.mp.model import Model

Data ###
I = ['V', 'M', 'F'] # V: vegetables, M: meat, F: fruits
J = ['pro', 'iron', 'cal'] # pro: proteins, iron: iron, cal: calcium

Data: parameters ###
C = {'V': 4, 'M': 10, 'F': 7} # Cost per kg
R = {'pro': 20, 'iron': 30, 'cal': 10} # Required amounts
A = {
 ('V', 'pro'): 5, ('V', 'iron'): 6, ('V', 'cal'): 5,
 ('M', 'pro'): 15, ('M', 'iron'): 10, ('M', 'cal'): 3,
 ('F', 'pro'): 4, ('F', 'iron'): 5, ('F', 'cal'): 12
}
decision_domain = "continuous" # Can be "continuous", "integer", or "binary"

Model
m = Model(name="min_cost_diet")

Decision variables
if decision_domain == "integer":
 x = m.integer_var_dict(keys=I, lb=0, name="x")
elif decision_domain == "binary":
 x = m.binary_var_dict(keys=I, name="x")
else: # continuous
 x = m.continuous_var_dict(keys=I, lb=0, name="x")

Objective function
m.minimize(m.sum(C[i] * x[i] for i in I))

Constraints

223 MeMoCO Simple (for real)

Written by Gabriel R.

for j in J:
 m.add_constraint(m.sum(A[i,j] * x[i] for i in I) >= R[j], ctname=f"min_{j}")

Solve and print results
m.print_information()
m.export_as_lp('./min_cost_diet.lp')
solution = m.solve()

if solution:
 m.print_solution()
 for i in I:
 print(f"{x[i].solution_value:.2f} kg of {i}")
 print(f"Total cost: {solution.objective_value:.2f}")
else:
 print("No solution found.")
 print("Solve status:", m.get_solve_status())
Another covering schema example is the following:

Here, a possible solution is:

from docplex.mp.model import Model

m = Model(name="Emergency")

#Defining variables
I = [1, 2, 3, 4, 5, 6]

x = m.binary_var_dict(keys=I, name="x")

Objective function
m.minimize(m.sum(x[i] for i in I))

Constraints
m.add_constraint(x[1] + x[2] >= 1)
m.add_constraint(x[1] + x[3] >= 1)
m.add_constraint(x[2] + x[4] >= 1)

224 MeMoCO Simple (for real)

Written by Gabriel R.

m.add_constraint(x[3] + x[4] >= 1)
m.add_constraint(x[5] + x[6] >= 1)

Solve and print results
m.print_information()
m.export_as_lp('./emergency.lp')
solution = m.solve()

if solution:
 m.print_solution()
 for i in I:
 print(f"{x[i].solution_value:.2f} is the quantity of product {i}")
else:
 print("No solution found.")
 print("Solve status:", m.get_solve_status())

Exploiting the fact this is all of a matrix of coverage, we can further minimize the model such as:

from docplex.mp.model import Model

Data
I = range(1, 7) # Set of potential locations {1, 2, ..., 6}

Coverage matrix: zones covered by each location
coverage = {
 1: [1, 2],
 2: [1, 2, 6],
 3: [3, 4],
 4: [3, 4, 5],
 5: [4, 5, 6],
 6: [2, 5, 6]
}

Create the model
m = Model(name="Emergency Location")

Decision variables
x = m.binary_var_dict(I, name="x")

Objective function: minimize the number of open locations
m.minimize(m.sum(x[i] for i in I))

Constraints: ensure each zone is covered
for zone in range(1, 7):
 m.add_constraint(

225 MeMoCO Simple (for real)

Written by Gabriel R.

 m.sum(x[i] for i in I if zone in coverage[i]) >= 1,
 ctname=f"cover_zone_{zone}"
)

Solve the model
solution = m.solve()

Print results
if solution:
 print("Optimal solution found:")
 for i in I:
 if x[i].solution_value > 0.5:
 print(f"Open emergency service at location {i}")
 print(f"Total number of locations: {solution.objective_value}")
else:
 print("No solution found")
 print("Solve status:", m.get_solve_status())

Optional: export the model to an LP file
m.export_as_lp("emergency_location.lp")

The professor used basically a similar previous approach:

from docplex.mp.model import Model

Data sets
I = [1, 2, 3, 4, 5, 6] # zones as locations
J = [1, 2, 3, 4, 5, 6] # zones as people

Data parameters
C = {i: 1 for i in I} # Cost of opening a facility at location i
P = {j: 1 for j in J} # Population (or importance) of zone j

Coverage matrix A
A = {
 (1,1): 1, (1,2): 1, (1,3): 0, (1,4): 0, (1,5): 0, (1,6): 0,
 (2,1): 1, (2,2): 1, (2,3): 0, (2,4): 0, (2,5): 0, (2,6): 1,
 (3,1): 0, (3,2): 0, (3,3): 1, (3,4): 1, (3,5): 0, (3,6): 0,
 (4,1): 0, (4,2): 0, (4,3): 1, (4,4): 1, (4,5): 1, (4,6): 0,
 (5,1): 0, (5,2): 0, (5,3): 0, (5,4): 1, (5,5): 1, (5,6): 1,
 (6,1): 0, (6,2): 1, (6,3): 0, (6,4): 0, (6,5): 1, (6,6): 1
}

Create the model
m = Model(name="Emergency Location")

Decision variables
x = m.binary_var_dict(I, name="x")

226 MeMoCO Simple (for real)

Written by Gabriel R.

Objective function: minimize the number of open locations
m.minimize(m.sum(C[i] * x[i] for i in I))

Constraints: ensure each zone is covered
for j in J:
 m.add_constraint(
 m.sum(A[i,j] * x[i] for i in I) >= 1,
 ctname=f"cover_zone_{j}"
)

Solve the model
solution = m.solve()

Print results
if solution:
 print("OPTIMAL SOLUTION:")
 for i in I:
 if x[i].solution_value > 0.5:
 print(f"1: Open emergency service at location {i}")
 else:
 print(f"0: Do not open emergency service at location {i}")
 print(f"Total cost: {solution.objective_value}")
else:
 print("No solution found")
 print("Solve status:", m.get_solve_status())

Optional: export the model to an LP file
m.export_as_lp("emergency_location_detailed.lp")

227 MeMoCO Simple (for real)

Written by Gabriel R.

15 LABORATORY 3 – TRANSPORTATION AND DOMAINS CONSTRAINTS

We are going to implement the following schema:

The complete implementation of the model is:

from docplex.mp.model import Model
import json
import ast # for string to dictionary conversion

we define only the sets, which will be filled with data later
I = [] # set of origins
J = [] # set of destinations

O = {} # set of origins
D = {} # set of destinations
C = {(i,j): 1 for i in I for j in J} # cost of transportation from origin i to destination j
decision_domain = ""

create one model instance, with a name
m = Model(name='transportation')

if decision_domain == "discrete":
 # dictionary with two indices
 x = m.binary_var_dict(keys1=I, keys2=J, name="x", ub = None, name = "xTR") # transportation quantities
from origin i to destination j
elif decision_domain == "cont":
 x = m.continuous_var_dict(keys1=I, keys2=J, name="x", ub = None, name = "xTR")
else:
 x = m.binary_var_dict(keys1=I, keys2=J, name="x", ub = None, name = "xTR")

228 MeMoCO Simple (for real)

Written by Gabriel R.

define the objective function
m.minimize(m.sum(C[i,j] * x[i,j] for i in I for j in J))

constraint for destinations
for j in J:
 m.add_constraint(m.sum(x[i,j] for i in I) >= D[j], ctname="destination_%s"%j)

constraint for origins
for i in I:
 m.add_constraint(m.sum(x[i,j] for j in J) <= O[i], ctname="origin_%s"%i)

solve the model
print(m.export_to_string())
m.solve()

print solution
for i in I:
 for j in J:
 print("x(%s, %s) = %d" % (i, j, x[i,j].solution_value))

Then, we import data from a file and then it is being used as control, with variables getting values from
files:

from docplex.mp.model import Model
import json
import ast # for string to dictionary conversion

read the input data from the file
with open('refr.json') as f:
 data = json.load(f)

we define only the sets, which will be filled with data later
I = data["I"] # set of origins
J = data["J"] # set of destinations

o_list = data["o_list"]
O = {I[i]: o_list[i] for i in range(len(I))} # set of origins, read element by element

d_list = data["d_list"]
D = {J[j]: d_list[j] for j in range(len(J))} # set of destinations, read element by element

read the cost matrix
c_matrix = data["c_matrix"]
C = {(I[i],I[j]): c_matrix[i][j] for i in range(len(I)) for j in range(len(I))}
indexing by the name and not the position

decision_domain = ""

229 MeMoCO Simple (for real)

Written by Gabriel R.

create one model instance, with a name
m = Model(name='transportation')

if decision_domain == "discrete":
 # dictionary with two indices
 x = m.binary_var_dict(keys1=I, keys2=J, name="x", ub = None, name = "xTR") # transportation quantities
from origin i to destination j
elif decision_domain == "cont":
 x = m.continuous_var_dict(keys1=I, keys2=J, name="x", ub = None, name = "xTR")
else:
 x = m.binary_var_dict(keys1=I, keys2=J, name="x", ub = None, name = "xTR")

define the objective function
m.minimize(m.sum(C[i,j] * x[i,j] for i in I for j in J))

constraint for destinations
for j in J:
 m.add_constraint(m.sum(x[i,j] for i in I) >= D[j], ctname="destination_%s"%j)

constraint for origins
for i in I:
 m.add_constraint(m.sum(x[i,j] for j in J) <= O[i], ctname="origin_%s"%i)

solve the model
print(m.export_to_string())
m.solve()

print solution
for i in I:
 for j in J:
 print("x(%s, %s) = %d" % (i, j, x[i,j].solution_value))

Now try to satisfy the model with additional constraints:

230 MeMoCO Simple (for real)

Written by Gabriel R.

Now, starting from the JSON file:

{
 "modelname" : "move refrigerators",
 "decision_domain": "discrete",

 "___comment01": "sets of origin factories I and destination stores J (a set is given as ordered list = array)",
 "I": ["A","B","C"],
 "J": [1,2,3,4],

 "___comment02": "arrays of factories' capacity and stores' request (follow the order in the related sets)",
 "o_list": [50,70,30],
 "d_list": [20,60,30,40],

 "___comment03": "factory-to-store cost matrix (matrix indexes follow the order in the related sets)",
 "c_matrix": [
 [6,8,3,2],
 [4,2,1,3],
 [4,2,6,5]
],
 "cost_threshold": 0.5,
 "low_cost": 2,
 "low_cost_min": 1
}

We write the entire file transport_py:

from docplex.mp.model import Model
import json
import ast # for string to dictionary conversion

read the input data from the file
with open('refr.json') as f:
 data = json.load(f)

we define only the sets, which will be filled with data later
I = data["I"] # set of origins
J = data["J"] # set of destinations

o_list = data["o_list"]
O = {I[i]: o_list[i] for i in range(len(I))} # set of origins, read element by element

d_list = data["d_list"]
D = {J[j]: d_list[j] for j in range(len(J))} # set of destinations, read element by element

read the cost matrix
c_matrix = data["c_matrix"]

231 MeMoCO Simple (for real)

Written by Gabriel R.

C = {(I[i],I[j]): c_matrix[i][j] for i in range(len(I)) for j in range(len(I))}
indexing by the name and not the position

OD = origin-destination pairs
cost_threshold_percent = data["cost_threshold_percent"]
ActiveODPairs = [(i,j) for i in I for j in J if C[i,j] <= cost_threshold_percent * max (C[o,d] for o in I for d in J)]

decision_domain = ""

create one model instance, with a name
m = Model(name='transportation')

if decision_domain == "discrete":
 x = m.integer_var_dict(keys = ActiveODPairs, name="x", lb = 0, ub = None, name = "XD")
elif decision_domain == "cont":
 x = m.continuous_var_dict(keys = ActiveODPairs, name="x", lb = 0, ub = None, name = "XC")
else:
 x = m.binary_var_dict(keys = ActiveODPairs, name="x", name = "XB")

define the objective function
m.minimize(m.sum(C[i,j] * x[i,j] for i,j in ActiveODPairs))

constraint for destinations
for j in J:
 m.add_constraint(m.sum(x[i,j] for i in I if(i,j) in ActiveODPairs) >= D[j], ctname="destination_%s"%j)

m.add_constraints(m.sum(x[i,j] for j in J if(i,j) in ActiveODPairs) <= O[i] for i in I)

L = data["LowCost"]
T = data["LowCostMinOnLink"]

m.add_constraints(x[i,j] >= L[i,j] for i,j in ActiveODPairs if C[i,j] <= T)
#x_ij >= L if c_ij <= T, forall i,j in act

sD = data["SpecialDestination"]
sO = data["SpecialOrigin"]
minSD = data["MinSpecialDestination"]
destination SpecialDestination should receive at least MinToSpecialDest units from each origin, but for
origin SpecialOrigin

x_i, sD >= minSD forall i in I \ {sO}
m.add_constraints(x[i,sD] >= minSD for i in I if i != sO and (i,sD) in ActiveODPairs) # this means that the pair
(i,sD) is active

m.print_information()
m.export_as_lp(path='transport.lp')

solve the model

232 MeMoCO Simple (for real)

Written by Gabriel R.

m.solve()

print the solution

for i,j in ActiveODPairs:
 print("x_%s_%s = %d" % (i, j, x[i,j].solution_value))

233 MeMoCO Simple (for real)

Written by Gabriel R.

16 LABORATORY 4 – FIXED COSTS MODEL AND EFFICIENT STRUCTURES

We want to implement this model:

We use the following JSON file:

{

 "modelname" : "fixed cost location",

 "___comment01": "set of potential locations' names. Each location is identified

by its position, first position is 0",

 "I_names":

["loc0","loc1","loc2","loc3","loc4","loc5","loc6","loc7","loc8","loc9"],

 "___comment02": "available budget",

 "W": 1e6,

 "___comment03": "lists of fixed costs, variable costs and revenues for each

location (euro per 100sqm)",

 "f_list": [1000,1210,2000,1500,1350,1560,1450,2100,1720,1110],

 "c_list": [250, 230, 190, 210, 200, 210, 260, 255, 220, 270],

 "r_list": [3000,4000,6600,5000,6000,6500,3500,2500,2600,4700],

 "___comment04": "PLUS: maximum and minimum number of open locations and their

minimum extension",

 "max_num_open": 5,

 "min_num_open": 3,

 "min_size_to_open": 15

}

234 MeMoCO Simple (for real)

Written by Gabriel R.

The model we are trying to implement is present here:

The actual model follows:

from docplex.mp.model import Model

import json

with open('facility_loc_basic_and_plus.json', 'r') as file:

 data = json.load(file)

I_names = data['I_names']

I = range(len(I_names))

Importing the data

W = data['W']

F = data['f_list']

C = data['c_list']

R = data['r_list']

K = data['max_num_open']

minLoc = data['min_num_open']

min_size = data['min_size_to_open']

Computed parameters

M = [(W - F[i])/C[i] for i in I]

m = Model(name='modelname')

x = m.continuous_var_list(I, name='x', lb=0) # x[i] is the fraction of the demand

of i that is satisfied by the facility

y = m.binary_var_list(I, name='y') # y[i] is 1 if facility i is open, 0 otherwise

Fixed the objective function syntax - removed extra parentheses

m.maximize(m.sum(R[i]*x[i] for i in I))

Budget constraint

m.add_constraint(m.sum(C[i]*x[i] + F[i]*y[i] for i in I) <= W)

Facility capacity constraints - fixed syntax

for i in I:

 m.add_constraint(x[i] <= M[i]*y[i])

Maximum number of facilities constraint

m.add_constraint(m.sum(y[i] for i in I) <= K)

Minimum number of facilities constraint

235 MeMoCO Simple (for real)

Written by Gabriel R.

m.add_constraint(m.sum(y[i] for i in I) >= minLoc)

Minimum size constraints

for i in I:

 m.add_constraint(x[i] >= min_size/100 * y[i]) # Convert min_size from sqm to

fraction

m.print_information()

if m.solve():

 m.print_solution(print_zeros=True)

 citytoshow = "loc01"

 posOfCity = I_names.index(citytoshow)

 print("the size of", citytoshow, "is", m.solution[x[posOfCity]])

else:

 print("no sol", m.get_solve_status())

Remember that operations done here should use the correct data structure (which are not
dictionaries, indexes, etc.), considering evaluating solutions might be very time-consuming. So, moral
of the story: Python is not good for efficiency.

Herem the first part of the exercise is implementing a model, while the second part is implementing
heuristics. For example, Computer Scientists are required basically to use C++, according to the
following:

236 MeMoCO Simple (for real)

Written by Gabriel R.

17 LABORATORY 5 – CPLEX APIS – INTRO, CONSTRAINTS AND

MODEL EXAMPLE

Note: for people using Windows, you have to use Visual Studio 2022, with C++ installed. In this case,
you will execute everything safely, using also this chapter as entire reference.

The professor provided us with an example folder, complete with a file called “cpxmacro.h” and also
some other files useful for compilation. It’s necessary to have a main() method, using for example
something like this:

Note: consider the existing Italian notes (found it myself and put on MEGA); on this part, they are made
really well.

The following are basic objects which are to be used inside of Cplex files:

Consider the Cplex APIs are inside of the file “cpxmacro.h”, present inside of the directory structure of
the professor. The following is its content:
/**

 * @file cpx_macro.h

 * Cplex Helper Macros

 *

 */

#ifndef CPX_MACRO_H

237 MeMoCO Simple (for real)

Written by Gabriel R.

#define CPX_MACRO_H

#include <cstring>

#include <string>

#include <stdexcept>

#include <ilcplex/cplex.h>

#define STRINGIZE(something) STRINGIZE_HELPER(something)

#define STRINGIZE_HELPER(something) #something

/**

 * typedefs of basic Callable Library entities,

 * i.e., environment (Env) and problem pointers (Prob).

 */

typedef CPXENVptr Env;

typedef CPXCENVptr CEnv;

typedef CPXLPptr Prob;

typedef CPXCLPptr CProb;

/* Cplex Error Status and Message Buffer */

extern int status;

const unsigned int BUF_SIZE = 4096;

extern char errmsg[BUF_SIZE];

/* Shortcut for declaring a Cplex Env */

#define DECL_ENV(name) \

Env name = CPXopenCPLEX(&status);\

if (status){\

 CPXgeterrorstring(NULL, status, errmsg);\

 int trailer = std::strlen(errmsg) - 1;\

 if (trailer >= 0) errmsg[trailer] = '\0';\

 throw std::runtime_error(std::string(__FILE__) + ":" + STRINGIZE(__LINE__) + ":

" + errmsg);\

}

/* Shortcut for declaring a Cplex Problem */

#define DECL_PROB(env, name) \

Prob name = CPXcreateprob(env, &status, "");\

if (status){\

 CPXgeterrorstring(NULL, status, errmsg);\

 int trailer = std::strlen(errmsg) - 1;\

 if (trailer >= 0) errmsg[trailer] = '\0';\

 throw std::runtime_error(std::string(__FILE__) + ":" + STRINGIZE(__LINE__) + ":

" + errmsg);\

}

238 MeMoCO Simple (for real)

Written by Gabriel R.

/* Make a checked call to a Cplex API function */

#define CHECKED_CPX_CALL(func, env, ...) do {\

status = func(env, __VA_ARGS__);\

if (status){\

 CPXgeterrorstring(env, status, errmsg);\

 int trailer = std::strlen(errmsg) - 1;\

 if (trailer >= 0) errmsg[trailer] = '\0';\

 throw std::runtime_error(std::string(__FILE__) + ":" + STRINGIZE(__LINE__) + ":

" + errmsg);\

} \

} while(false)

#endif /* CPX_MACRO_H */

As you can see, it allows you to call Cplex with specific functions you will see soon. In particular,
consider the CHECKED_CPX_CALL, which allows you to craft new constraints (ADD_ROWS) or add
variables (ADD_COLS). Consider the following calls as examples to be used in general (this is the first
exercise given by the professor, but is present so you can see how these functions work):

1. First CHECKED_CPX_CALL - Creating x variables:

```cpp 

CHECKED_CPX_CALL(CPXnewcols, env, lp, 1, &obj, &lb, &ub, &xtype, &xname); 

// Parameters: 

// env    - CPLEX environment pointer 

// lp     - CPLEX problem pointer  

// 1      - Number of columns (variables) to create (1 at a time) 

// &obj   - Pointer to objective coefficient (0.0 for x variables as they don't 

appear in objective) 

// &lb    - Pointer to lower bound (0.0 for x variables) 

// &ub    - Pointer to upper bound (CPX_INFBOUND as x ∈ R+) 

// &xtype - Pointer to variable type ('C' for continuous) 

// &xname - Pointer to variable name ("x_i_j") 

``` 


2. Second CHECKED_CPX_CALL - Creating y variables:

```cpp 

CHECKED_CPX_CALL(CPXnewcols, env, lp, 1, &obj, &lb, &ub, &ytype, &yname); 

// Parameters: 

// env    - CPLEX environment pointer 

// lp     - CPLEX problem pointer  

// 1      - Number of columns (variables) to create (1 at a time) 

// &obj   - Pointer to objective coefficient (C[i][j] for y variables) 

// &lb    - Pointer to lower bound (0.0 for y variables) 

// &ub    - Pointer to upper bound (1.0 as y is binary) 

// &ytype - Pointer to variable type ('B' for binary) 

// &yname - Pointer to variable name ("y_i_j") 

``` 


3. CHECKED_CPX_CALL for Constraint (10) - Flow Conservation:

239 MeMoCO Simple (for real)

Written by Gabriel R.

```cpp 

CHECKED_CPX_CALL(CPXaddrows, env, lp, 0, 1, idx.size(), &rhs, &sense, &matbeg, 

&idx[0], &coef[0], NULL, NULL); 

// Parameters: 

// env         - CPLEX environment pointer 

// lp          - CPLEX problem pointer 

// 0           - Number of new columns (0 as we're just adding constraints) 

// 1           - Number of new rows (1 constraint at a time) 

// idx.size()  - Number of nonzero coefficients in the constraint 

// &rhs        - Pointer to right hand side value (1.0 for flow conservation) 

// &sense      - Pointer to constraint sense ('E' for equality) 

// &matbeg     - Pointer to beginning position in the constraint matrix (0) 

// &idx[0]     - Pointer to array of variable indices in this constraint 

// &coef[0]    - Pointer to array of coefficients for those variables 

// NULL        - No new column names 

// NULL        - No new row names 

``` 


A problematic line is the following one:

#include <ilcplex/ilocplex.h>

This tells you that you have to include Cplex in order to make it work, it is the trickiest part.

Jump here or in case follow this video (both mine) to know more, particularly for Windows users.

- Linux users are only required to activate . cplex_env and you should be good to go
- Mac users might apply the following solution

To run the code examples in this guide, you will need:

• Cplex Optimization Studio installed with a valid license

• A C++ compiler (e.g. GCC)

https://youtu.be/G0lI2WT_1_4?si=BVL8dboUotKgAzl_

240 MeMoCO Simple (for real)

Written by Gabriel R.

• Cplex included library paths configured in your development environment. For detailed
instructions on setting up Cplex and configuring your environment, refer to the official Cplex
documentation.

Coming back to the actual lab, the model to be implemented here is the following:

The objective is to minimize total cost while satisfying all supply, demand, and truck availability
constraints. The linking constraints ensure that y[i][j] takes a value of 1 if there is any flow on the route
from i to j.

A generic model is to be represented with sparse matrices since many elements can be evaluated to
be zero. We will be using three main vectors here_

- val = values of matrix in a compact way
- idx = index of column which value is in the same position for vector “val”
- beg = indexes for “val” vector where matrix rows begin

Consider normally you can have 100000 constraints and 2000000 variables, so many will be null; this
requires a sparse matrix data structure, where normally most of the entries may be zero.

241 MeMoCO Simple (for real)

Written by Gabriel R.

Inside of the addrow.xls file, provided within the same folder between the examples, there is the
representation to be used by both the model and the solution of the actual model:

For example, looking at row1 in the matrix:

x1 + x2 - 5z <= 0

In sparse format:

rmatbeg[0] = 0 // Row 1 starts at position 0

rmatind = [0,1,4] // Column indices for x1,x2,z

rmatval = [1,1,-5] // Coefficient values

This representation:

• Saves memory by only storing nonzero elements

• Makes computation more efficient

• beg array lets you quickly find where each row starts

• idx and val arrays work in parallel to store location and value of nonzeros

Before moving on, let’s clarify:

- Variables are to be invoked with CPXnewcols with following syntax:

242 MeMoCO Simple (for real)

Written by Gabriel R.

As taken from the Italian notes, we say in summary:

- Environment
- Linear Problem
- Count of variables
- Objective value
- Lower Bound/Upper Bound
- Type of variables
- Name of variables

- Constraints are to be inserted with CPXaddrows

As taken from the Italian notes, we say in summary:

- Environment
- Linear Problem
- Number of columns (variables) to create
- Number of rows (constraints) to add
- Number of coefficients not zero (nz)
- Right hand side (so, after the sense sign)
- Sense (<, =, >)

o Constraint greater than X
▪ c1 > x (sense = G, rhs = x)

- Lower Bound/Upper Bound
- Starting values of the rows (beg)
- Starting rows for the index rows (idx)
- Names of columns/rows

243 MeMoCO Simple (for real)

Written by Gabriel R.

The code to be examined is the following (commented below), which is the less efficient way, made to
benchmark and to call the Cplex model once so to make it work:

/**

 * @file first.cpp

 * @brief basic use of newcols and addrow

 * to solve the model

 * max 2 x1 + 3 x2 + w

 * x1 + x2 <= 5 z ---> x1 + x2 - 5 z <=

0

 * x2 + 9 y1 + 9 y2 + 8w = 2

 * 8 y1 >= -1

 * -4 y1 + 7z + 5w <= 9

 * x1,x2 >=0

 * y1 <=0

 * z in {0,1}

 * w in Z+

 */

#include <cstdio>

#include <iostream>

#include <vector>

#include <string>

#include "cpxmacro.h"

using namespace std;

// error status and messagge buffer

int status;

char errmsg[BUF_SIZE];

int main (int argc, char const *argv[])

{

 try

 {

 ///////////////////////// init

 DECL_ENV(env);

 DECL_PROB(env, lp);

 ///////////////////////// create variables with newcols

 //

 // status = CPXnewcols (env, lp, ccnt, obj, lb, ub, xctype, colname);

 //

 // all variables will be created in an array and each variable will be

identified by the related index

 // => we assume that variables are SORTED as ** x1, x2, y1, y2, z, w **

 int ccnt = 6;

 double objCost[6] = { 2.0, 3.0, 0.0, 0.0, 0.0, 1.0 };

 // cost in the objective function;

244 MeMoCO Simple (for real)

Written by Gabriel R.

 double lb[6] = { 0.0 , 0.0 , -CPX_INFBOUND, -

CPX_INFBOUND, 0.0, 0.0 };

 double ub[6] = { CPX_INFBOUND, CPX_INFBOUND, 0.0 , CPX_INFBOUND

, 1.0, CPX_INFBOUND };

 // variable lower and upper bounds

 char xtype[6] = { 'C' , 'C' , 'C' , 'C' , 'B' , 'I' };

 // variable types 'C' or 'B' or 'I' ...

 char ** xname = NULL;

 // no names

 CHECKED_CPX_CALL(CPXnewcols, env, lp, ccnt, &objCost[0], &lb[0], &ub[0],

&xtype[0], xname);

 ///////////////////////// create constraints

 //

 // status = CPXaddrows (env, lp, colcnt, rowcnt, nzcnt, rhs, sense, rmatbeg,

rmatind, rmatval , newcolname, newrowname);

 //

 int colcount = 0;

 // no new columns

 int rowcount = 4;

 // number of constraints

 int nzcnt = 11;

 // number of NON-ZERO coefficients

 double rhs[4] = {0,2,-1,9};

 // right-hand-sides: notice that constraints are rewritten so that NO

variable appears in the RHS!!!

 char sense[4] = {'L','E','G','L'};

 // constraint type 'L' or 'E' or 'G' ...

 // the coefficient matrix will be linearized in a vector and ONLY NON-ZERO

coefficients

 // need to be stored: the following three vectors are used

 double rmatval[11] = { 1.0, 1.0, -5.0, 1.0, 9.0, 9.0, 8.0, 8.0, -

4.0, 7.0, 5.0 };

 // the linearized vector of non-zero coefficients

 int rmatbeg[4] = {0,3,7,8};

 // one element for each constraint (row), reporting the index where each row

of the coefficient matrix starts

 int rmatind[11] = {0,1,4, 1,2,3,5, 2, 2,4,5};

 // one element for each zon-zero coefficient, reporting its column index

 char ** newcolnames = NULL;

 char ** rownames = NULL;

 // no names

 CHECKED_CPX_CALL(CPXaddrows, env, lp, colcount, rowcount, nzcnt, &rhs[0],

&sense[0], &rmatbeg[0], &rmatind[0], &rmatval[0], newcolnames , rownames);

 CHECKED_CPX_CALL(CPXchgobjsen, env, lp, CPX_MAX);

 // change to MAXimize (default is MINimize)

 ///////////////////////// print (debug)

 CHECKED_CPX_CALL(CPXwriteprob, env, lp, "first.lp", NULL);

245 MeMoCO Simple (for real)

Written by Gabriel R.

 ///////////////////////// optimize

 CHECKED_CPX_CALL(CPXmipopt, env, lp);

 ///////////////////////// print

 double objval;

 CHECKED_CPX_CALL(CPXgetobjval, env, lp, &objval);

 // get the objective function value into objval

 std::cout << "Objval: " << objval << std::endl;

 int n = CPXgetnumcols(env, lp);

 // get the number of variables (columns) into n (simple routine, no need for

return status);

 /////// get the value of the variables using

 //

 // status = CPXgetx (env, lp, varVals, fromIdx, toIdx);

 //

 std::vector<double> varVals;

 varVals.resize(n);

 int fromIdx = 0;

 int toIdx = n - 1;

 // we prepare a vector to get n values from index 0 to index n-1

 CHECKED_CPX_CALL(CPXgetx, env, lp, &varVals[0], fromIdx, toIdx);

 // get the value of the variables from index fromIdx to index toIdx into an

array having (toIdx - fromIdx + 1) open positions

 for (int i = 0 ; i < n ; ++i) {

 std::cout << "var in position " << i << " : " << varVals[i] << std::endl;

 /// to get variable name, use the RATHER TRICKY "CPXgetcolname"

 /// status = CPXgetcolname (env, lp, cur_colname, cur_colnamestore,

cur_storespace, &surplus, 0, cur_numcols-1);

 }

 double value_of_zed_var;

 CHECKED_CPX_CALL(CPXgetx, env, lp, &value_of_zed_var, 4, 4);

 CHECKED_CPX_CALL(CPXsolwrite, env, lp, "first.sol");

 // write the solution to a text file

 // free

 CPXfreeprob(env, &lp);

 CPXcloseCPLEX(&env);

 }

 catch(std::exception& e)

 {

 std::cout << ">>>EXCEPTION: " << e.what() << std::endl;

 }

 return 0;

}

246 MeMoCO Simple (for real)

Written by Gabriel R.

Creating variables and constraints requires one step at a time, so we use something like the following,
in which variables are called “columns”:

CPXnewcols(env, lp, ccnt, obj, lb, ub, xctype, colname)

// - ccnt: number of variables

// - obj: objective coefficients (Cij, F, L-F)

// - lb: lower bounds (0 for all)

// - ub: upper bounds (capacity K for xij, 1 for yij and z)

// - xctype: variable types ('C' for continuous xij, 'B' for binary yij

and z)

In Cplex a single list of variables will be created each time, where each variable will be in the relative
correct position.

Double vectors or maps are basically the same thing of using lists or dictionaries, then we map
iteratively each variable in a straightforward way.

Now, one by one, we implement the constraints and the parts of the model – First, let's handle the y
variables and map (similar to how x was handled):

/*MAP FOR y VARS: initial memory allocation for map vector*/

map_y.resize(I);

for (int i = 0 ; i < I ; ++i) {

 map_y[i].resize(J);

 for (int j = 0 ; j < J ; ++j) {

 map_y[i][j] = -1;

 }

}

// add y vars [in o.f.: ... + F sum{ij} y_ij + ...]

for (int i = 0; i < I; i++) {

 for (int j = 0; j < J; j++) {

 if (C[i][j] > od_cost_max) continue; // EXT1

 char xtype = 'B'; // Binary variable

 double lb = 0.0;

 double ub = 1.0;

 snprintf(name, NAME_SIZE, "y_%c_%c", nameI[i], nameJ[j]);

247 MeMoCO Simple (for real)

Written by Gabriel R.

 char* xname = (char*)(&name[0]);

 CHECKED_CPX_CALL(CPXnewcols, env, lp, 1, &F, &lb, &ub, &xtype,

&xname);

 map_y[i][j] = current_var_position++;

 }

}

Let’s go on completing the code, the objective function - min ∑ C_ij x_ij + F ∑ y_ij + (L-F)z:

// add z var [in o.f.: ... + (L-F) z]

char xtype = 'B'; // Binary variable

double lb = 0.0;

double ub = 1.0;

double obj = L-F; // Coefficient in objective function

snprintf(name, NAME_SIZE, "z");

char* xname = (char*)(&name[0]);

CHECKED_CPX_CALL(CPXnewcols, env, lp, 1, &obj, &lb, &ub, &xtype, &xname

);

map_z = current_var_position++;

Now the constraints match the mathematical model:

// add capacity constraints (origin) [forall i, sum{j: x_ij exists} x_ij

<= D_j]

for (int i = 0; i < I; i++) {

 std::vector<int> idx;

 std::vector<double> coef;

 char sense = 'L';

 for (int j = 0; j < J; j++) {

 if (map_x[i][j] < 0) continue;

 idx.push_back(map_x[i][j]);

 coef.push_back(1.0);

 }

 int matbeg = 0;

248 MeMoCO Simple (for real)

Written by Gabriel R.

 CHECKED_CPX_CALL(CPXaddrows, env, lp, 0, 1, idx.size(), &D[i],

&sense, &matbeg, &idx[0], &coef[0], NULL, NULL);

}

// add linking constraints (x_ij - K y_ij <= 0)

for (int i = 0; i < I; i++) {

 for (int j = 0; j < J; j++) {

 if (map_x[i][j] < 0) continue;

 std::vector<int> idx;

 std::vector<double> coef;

 double rhs = 0.0;

 char sense = 'L';

 idx.push_back(map_x[i][j]);

 coef.push_back(1.0);

 idx.push_back(map_y[i][j]);

 coef.push_back(-K);

 int matbeg = 0;

 CHECKED_CPX_CALL(CPXaddrows, env, lp, 0, 1, idx.size(), &rhs,

&sense, &matbeg, &idx[0], &coef[0], NULL, NULL);

 }

}

// add counting constraint (sum_ij y_ij - z <= N)

{

 std::vector<int> idx;

 std::vector<double> coef;

 char sense = 'L';

 for (int i = 0; i < I; i++) {

 for (int j = 0; j < J; j++) {

249 MeMoCO Simple (for real)

Written by Gabriel R.

 if (map_y[i][j] < 0 || C[i][j] > od_cost_low) continue;

 idx.push_back(map_y[i][j]);

 coef.push_back(1.0);

 }

 }

 idx.push_back(map_z);

 coef.push_back(-1.0);

 int matbeg = 0;

 CHECKED_CPX_CALL(CPXaddrows, env, lp, 0, 1, idx.size(), &N, &sense,

&matbeg, &idx[0], &coef[0], NULL, NULL);

}

// add condition constraint (y_A2 + y_B2 <= 1)

{

 std::vector<int> idx;

 std::vector<double> coef;

 double rhs = 1.0;

 char sense = 'L';

 idx.push_back(map_y[0][1]); // A2

 coef.push_back(1.0);

 idx.push_back(map_y[1][1]); // B2

 coef.push_back(1.0);

 int matbeg = 0;

 CHECKED_CPX_CALL(CPXaddrows, env, lp, 0, 1, idx.size(), &rhs,

&sense, &matbeg, &idx[0], &coef[0], NULL, NULL);

}

Finally, getting the solution values:

// print values of decision variables

250 MeMoCO Simple (for real)

Written by Gabriel R.

std::vector<double> varVals;

varVals.resize(current_var_position);

CHECKED_CPX_CALL(CPXgetx, env, lp, &varVals[0], 0, current_var_position-

1);

// Print x variables

for (int i = 0; i < I; i++) {

 for (int j = 0; j < J; j++) {

 if (map_x[i][j] >= 0) {

 std::cout << "x_" << nameI[i] << "_" << nameJ[j] << " = "

 << varVals[map_x[i][j]] << std::endl;

 }

 }

}

// Print y variables

for (int i = 0; i < I; i++) {

 for (int j = 0; j < J; j++) {

 if (map_y[i][j] >= 0) {

 std::cout << "y_" << nameI[i] << "_" << nameJ[j] << " = "

 << varVals[map_y[i][j]] << std::endl;

 }

 }

}

// Print z variable

std::cout << "z = " << varVals[map_z] << std::endl;

251 MeMoCO Simple (for real)

Written by Gabriel R.

18 LABORATORY 6 – CPLEX APIS – CONCLUDING SCAFFOLDS

MODELING

Continuing what we have established up to now, we want to add constraints to the previous model
formulation.

- Request/Demand Constraints: For each destination j, the total amount transported from all
origins must be at least the required demand R[j]. Mathematically: ∀j ∈ J : ∑ᵢ₌₁ᴺ xᵢⱼ ≥ Rⱼ

- Capacity/Supply Constraints: For each origin i, the total amount transported to all destinations
cannot exceed the available supply D[i]. Mathematically: ∀i ∈ I : ∑ⱼ₌₁ᴹ xᵢⱼ ≤ Dᵢ

- Linking Constraints: If any amount is transported from origin i to destination j (i.e., if xᵢⱼ > 0),
then the corresponding yᵢⱼ variable must be 1. This is enforced using a BigM constraint.
Mathematically: ∀i ∈ I, j ∈ J : xᵢⱼ - M·yᵢⱼ ≤ 0

Here's how we implement these in our code using the CPLEX API's CPXaddrows function, in order to
use all of the sets present, adding 1 constraint to the model for all parts of the vector following the
model starting from 0 in the sparse matrix.

The point of using the vectors is to have all of the indices of coefficients of the corresponding
variables, pushing back one after the other all of the variables involved:

// add request constraints (destinations)

for (int j = 0; j < J; j++) {

 std::vector<int> idx;

 std::vector<double> coef;

 char sense = 'G';

 for (int i = 0; i < I; i++) {

 if (map_x[i][j] < 0) continue;

 idx.push_back(map_x[i][j]);

 coef.push_back(1.0);

 }

 int matbeg = 0;

 CHECKED_CPX_CALL(CPXaddrows, env, lp, 0, 1, idx.size(), &R[j], &sense,

&matbeg, &idx[0], &coef[0], NULL, NULL);

}

// add capacity constraints (origin)

for (int i = 0; i < I; i++) {

252 MeMoCO Simple (for real)

Written by Gabriel R.

 std::vector<int> idx;

 std::vector<double> coef;

 char sense = 'L';

 for (int j = 0; j < J; j++) {

 if (map_x[i][j] < 0) continue;

 idx.push_back(map_x[i][j]);

 coef.push_back(1.0);

 }

 int matbeg = 0;

 CHECKED_CPX_CALL(CPXaddrows, env, lp, 0, 1, idx.size(), &D[i], &sense,

&matbeg, &idx[0], &coef[0], NULL, NULL);

}

// add linking constraints

for (int i = 0; i < I; i++) {

 for (int j = 0; j < J; j++) {

 if (map_x[i][j] < 0 || map_y[i][j] < 0) continue;

 std::vector<int> idx(2);

 std::vector<double> coef(2);

 char sense = 'L';

 idx[0] = map_x[i][j];

 idx[1] = map_y[i][j];

 coef[0] = 1.0;

 coef[1] = -K;

 double rhs = 0;

 int matbeg = 0;

 CHECKED_CPX_CALL(CPXaddrows, env, lp, 0, 1, idx.size(), &rhs, &sense,

&matbeg, &idx[0], &coef[0], NULL, NULL);

 }

}

The logic is similar to what we did for the other constraints:

- We loop through the relevant dimensions (origins i and destinations j)

253 MeMoCO Simple (for real)

Written by Gabriel R.

- We build up idx and coef vectors with the variable indices and coefficients for the non-zero
terms

- We specify the right-hand side value (R[j], D[i] or 0), sense ('G' for ≥, 'L' for ≤) and matrix start
index matbeg

- We invoke CPXaddrows to add the fully constructed constraint to CPLEX

The only new aspect is handling the BigM constraint, where we need two terms in the expression x ᵢⱼ -
M·yᵢⱼ. We account for this by having idx and coef vectors of size 2 and setting their elements
accordingly.

With this, our model implementation is complete! We can now invoke the solver, retrieve the solution,
and interpret the results.

The code for solving the model remains the same as before:

// Optimize the model

CHECKED_CPX_CALL(CPXmipopt, env, lp);

// Get the solution status

int solstat = CPXgetstat(env, lp);

if (solstat == CPXMIP_OPTIMAL) {

 std::cout << "Optimal solution found!\n";

} else {

 std::cout << "No optimal solution found.\n";

 // Handle other statuses ...

}

CPXmipopt invokes the CPLEX solver on our mixed integer programming model. CPXgetstat retrieves
the solution status, which we check to determine if an optimal solution was found.

Assuming a solution exists, we can query CPLEX for the variable values:

// Get the objective value

double objval;

CHECKED_CPX_CALL(CPXgetobjval, env, lp, &objval);

std::cout << "Objective value: " << objval << std::endl;

// Get the variable values

std::vector<double> xval(I*J);

CHECKED_CPX_CALL(CPXgetx, env, lp, &xval[0], 0, I*J-1);

254 MeMoCO Simple (for real)

Written by Gabriel R.

for (int i = 0; i < I; i++) {

 for (int j = 0; j < J; j++) {

 if (map_x[i][j] >= 0) {

 std::cout << "x_" << nameI[i] << "_" << nameJ[j] << " = "

 << xval[map_x[i][j]] << std::endl;

 }

 }

}

// Similarly get y and z values ...

CPXgetobjval retrieves the value of the objective function at the optimal solution.

CPXgetx retrieves the values of the decision variables. Since CPLEX stores all variables in a single
indexed array, we use our map_x to go from the logical 2D representation (origins i and destinations j)
to the actual indices of the x variables. We then print out the non-zero x values.

The same approach can be used for the y and z variables. With this, we have completed the end-to-
end process of implementing, solving and interpreting the results of an optimization model using the
CPLEX APIs.

255 MeMoCO Simple (for real)

Written by Gabriel R.

19 LABORATORY 7 – NEIGHBORHOOD SEARCH FOR THE SYMMETRIC

TSP (TABU SEARCH)

Note: for people using Windows: make is not natively installed – follow this one.

The goal is to implement a local search for the TSP (folder of the same name) with the following files
(this comes from 0.skeleton) – differently from Cplex APIs lessons, here VS Code is enough:

We are trying to compile one file of the dat present like this:

PS C:\Users\roves\OneDrive\Documenti\GitHub\Computer-Science-

UniPD\Courses\Other elective\MeMoCO\Labs\Lab

7\l03.heur.ls.tsp\0.skeleton> make

g++ -g -Wall -O2 -c TSPSolver.cpp -o TSPSolver.o

TSPSolver.cpp: In member function 'bool TSPSolver::solve(const TSP&,

const TSPSolution&, TSPSolution&)':

TSPSolver.cpp:15:10: warning: unused variable 'iter' [-Wunused-variable]

 15 | int iter = 0;

 | ^~~~

g++ -g -Wall -O2 -c main.cpp -o main.o

g++ -g -Wall -O2 TSPSolver.o main.o -o main

PS C:\Users\roves\OneDrive\Documenti\GitHub\Computer-Science-

UniPD\Courses\Other elective\MeMoCO\Labs\Lab

7\l03.heur.ls.tsp\0.skeleton> ./main tsp12.1.dat

number of nodes n = 12

0 8 2 7 10 4 9 1 6 5 11 3 0 ###

FROM solution: 0 8 2 7 10 4 9 1 6 5 11 3 0 (value : 135.7)

TO solution: 0 8 2 7 10 4 9 1 6 5 11 3 0 (value : 135.7)

https://stackoverflow.com/questions/2532234/how-to-run-a-makefile-in-windows

256 MeMoCO Simple (for real)

Written by Gabriel R.

in 0.000942945 seconds (user time)

in 0.001 seconds (CPU time)

To avoid problems/long logs for people in labs/using Linux, comment line 14 inside of TSPSolution.h:

// #define uint unsigned int // for people in lab, comment it

Let’s read for example the file:

/**

* @file TSPSolution.h

* @brief TSP solution

*

*/

#ifndef TSPSOLUTION_H

#define TSPSOLUTION_H

#include <vector>

#include "TSP.h"

#define uint unsigned int // for people in lab, comment it

/**

* TSP Solution representation: ordered sequence of nodes (path representation)

*/

class TSPSolution

{

public:

 std::vector<int> sequence;

public:

 /** Constructor

 * build a standard solution as the sequence <0, 1, 2, 3 ... n-1, 0>

 * @param tsp TSP instance

 * @return ---

 */

 TSPSolution(const TSP& tsp) {

 sequence.reserve(tsp.n + 1);

 for (int i = 0; i < tsp.n ; ++i) {

 sequence.push_back(i);

 }

 sequence.push_back(0);

 }

 /** Copy constructor

 * build a solution from another

 * @param tspSol TSP solution

 * @return ---

 */

257 MeMoCO Simple (for real)

Written by Gabriel R.

 TSPSolution(const TSPSolution& tspSol) {

 sequence.reserve(tspSol.sequence.size());

 for (uint i = 0; i < tspSol.sequence.size(); ++i) {

 sequence.push_back(tspSol.sequence[i]);

 }

 }

public:

 /** print method

 * @param ---

 * @return ---

 */

 void print (void) {

 for (uint i = 0; i < sequence.size(); i++) {

 std::cout << sequence[i] << " ";

 }

 }

 /** assignment method

 * copy a solution into another one

 * @param right TSP solution to get into

 * @return ---

 */

 TSPSolution& operator=(const TSPSolution& right) {

 // Handle self-assignment:

 if(this == &right) return *this;

 for (uint i = 0; i < sequence.size(); i++) {

 sequence[i] = right.sequence[i];

 }

 return *this;

 }

};

#endif /* TSPSOLUTION_H */

This is the header file that defines the TSPSolution class and related structures. It contains:

- The sequence of the cities as a vector
- N+1 cities to have an Hamiltonian cycle

We’ll also be commenting TPSSolver.h:

/**

 * @file TSPSolver.h

 * @brief TSP solver (neighborhood search)

 *

 */

#ifndef TSPSOLVER_H

#define TSPSOLVER_H

#include <vector>

258 MeMoCO Simple (for real)

Written by Gabriel R.

#include "TSPSolution.h"

/**

 * Class representing substring reversal move

 */

typedef struct move {

 int substring_begin;

 int substring_end;

} TSPMove;

/**

 * Class that solves a TSP problem by neighbourdood search and 2-opt moves

 */

class TSPSolver

{

public:

 /** Constructor */

 TSPSolver () { }

 /**

 * evaluate a solution

 * @param sol: solution to be evaluated

 * @param TSP: TSP data

 * @return the value of the solution

 */

 double evaluate (const TSPSolution& sol , const TSP& tsp) const {

 double total = 0.0;

 for (uint i = 0 ; i < sol.sequence.size() - 1 ; ++i) {

 int from = sol.sequence[i] ;

 int to = sol.sequence[i+1];

 total += tsp.cost[from][to];

 }

 return total;

 }

 /**

 * initialize a solution as a random sequence by random swaps

 * @param sol solution to be initialized

 * @return true if everything OK, false otherwise

 */

 bool initRnd (TSPSolution& sol) {

 srand(time(NULL));

 for (uint i = 1 ; i < sol.sequence.size() ; ++i) {

 // intial and final position are fixed (initial/final node remains 0)

 int idx1 = rand() % (sol.sequence.size()-2) + 1;

 int idx2 = rand() % (sol.sequence.size()-2) + 1;

 int tmp = sol.sequence[idx1];

 sol.sequence[idx1] = sol.sequence[idx2];

 sol.sequence[idx2] = tmp;

 }

 std::cout << "### "; sol.print(); std::cout << " ###" << std::endl;

259 MeMoCO Simple (for real)

Written by Gabriel R.

 return true;

 }

 /**

 * search for a good tour by neighbourhood search

 * @param TSP TSP data

 * @param initSol initial solution

 * @param bestSol best found solution (output)

 * @return true id everything OK, false otherwise

 */

 bool solve (const TSP& tsp , const TSPSolution& initSol , TSPSolution& bestSol

);

protected:

 //TODO: declare here any "internal" method

#endif /* TSPSOLVER_H */

The move is represented by a substring reversal, where given a sequence you take a solution reversing
a substring (taking X arcs and removing them so to understand the actual starting/ending position).

There is then the solution evaluation, starting from the o.f., starting from 0 and finishing into the
second-last position, adding cost from each city. The solution is initialized starting from random
swaps, so to create an instance of the TSP.

Then, we are commeting TSPSolver.cpp:

/**

 * @file TSPSolver.cpp

 * @brief TSP solver (neighborhood search)

 *

 */

#include "TSPSolver.h"

#include <iostream>

bool TSPSolver::solve (const TSP& tsp , const TSPSolution& initSol , TSPSolution&

bestSol)

{

 try

 {

 bool stop = false;

 int iter = 0;

 TSPSolution currSol(initSol);

 while (! stop) {

 /// TODO: replace the following by the local search iteration

 // that updates currSol if an improving neighbor exists and

 // stops otherwise

260 MeMoCO Simple (for real)

Written by Gabriel R.

 stop = true;

 }

 bestSol = currSol;

 }

 catch(std::exception& e)

 {

 std::cout << ">>>EXCEPTION: " << e.what() << std::endl;

 return false;

 }

 return true;

}

//TODO: "internal methods” if any

This is the implementation file containing the actual neighborhood search algorithm. Currently, the
solve() method has a placeholder implementation that needs to be replaced with a complete local
search iteration that:

1. Searches for improving neighbor solutions using 2-opt moves

2. Updates the current solution when a better neighbor is found

3. Stops when no improving neighbor exists

The main functionality that needs to be implemented here is the neighborhood exploration and
solution improvement logic. The logic is not so simple, according to the professor; consider we have
to swap each nodes by “k”, as you can see by the image here;

We would need some function to transform the current solution to a neighbor solution (take a better
solution with the local search); one way to start is to write a small function into the solver, for example
inside the protected part (present in the TSPSolver header file).

261 MeMoCO Simple (for real)

Written by Gabriel R.

I propose the following implementation:

TSPSolver:

protected:

 /**

 * Performs a 2-opt move by reversing a subsequence

 * @param sol solution to modify

 * @param move the 2-opt move to perform

 * @return true if move was performed successfully

 */

 bool make2OptMove(TSPSolution& sol, const TSPMove& move) const;

 /**

 * Performs a 3-opt move by reversing two subsequences

 * @param sol solution to modify

 * @param move1 first subsequence to reverse

 * @param move2 second subsequence to reverse

 * @return true if move was performed successfully

 */

 bool make3OptMove(TSPSolution& sol, const TSPMove& move1, const TSPMove& move2)

const;

 /**

 * Evaluates the improvement of a 2-opt move without actually performing it

 * @param sol current solution

 * @param tsp problem instance

 * @param move the move to evaluate

 * @return cost improvement (negative if move improves solution)

 */

 double evaluate2OptMove(const TSPSolution& sol, const TSP& tsp, const TSPMove&

move) const;

 /**

 * Evaluates the improvement of a 3-opt move without actually performing it

 * @param sol current solution

 * @param tsp problem instance

 * @param move1 first move to evaluate

 * @param move2 second move to evaluate

 * @return cost improvement (negative if move improves solution)

 */

 double evaluate3OptMove(const TSPSolution& sol, const TSP& tsp,

 const TSPMove& move1, const TSPMove& move2) const;

TSPSolver.cpp

bool TSPSolver::make2OptMove(TSPSolution& sol, const TSPMove& move) const {

 // Reverse subsequence from begin to end

 int i = move.substring_begin;

 int j = move.substring_end;

262 MeMoCO Simple (for real)

Written by Gabriel R.

 while(i < j) {

 std::swap(sol.sequence[i], sol.sequence[j]);

 i++; j--;

 }

 return true;

}

bool TSPSolver::make3OptMove(TSPSolution& sol, const TSPMove& move1, const TSPMove&

move2) const {

 // Perform two subsequence reversals

 make2OptMove(sol, move1);

 make2OptMove(sol, move2);

 return true;

}

double TSPSolver::evaluate2OptMove(const TSPSolution& sol, const TSP& tsp, const

TSPMove& move) const {

 int i = move.substring_begin;

 int j = move.substring_end;

 // Calculate cost difference by looking at edges that would be removed/added

 double removed_cost = tsp.cost[sol.sequence[i-1]][sol.sequence[i]] +

 tsp.cost[sol.sequence[j]][sol.sequence[j+1]];

 double added_cost = tsp.cost[sol.sequence[i-1]][sol.sequence[j]] +

 tsp.cost[sol.sequence[i]][sol.sequence[j+1]];

 return added_cost - removed_cost;

}

double TSPSolver::evaluate3OptMove(const TSPSolution& sol, const TSP& tsp,

 const TSPMove& move1, const TSPMove& move2) const

{

 // Evaluate both moves combined

 TSPSolution temp_sol = sol;

 make2OptMove(temp_sol, move1);

 double improvement = evaluate2OptMove(temp_sol, tsp, move2);

 return improvement;

}

bool TSPSolver::solve(const TSP& tsp, const TSPSolution& initSol, TSPSolution&

bestSol) {

 try {

 TSPSolution currSol(initSol);

 double currCost = evaluate(currSol, tsp);

 bool improved = true;

 while(improved) {

 improved = false;

 // Try 2-opt moves first

 for(uint i = 1; i < currSol.sequence.size()-2 && !improved; i++) {

263 MeMoCO Simple (for real)

Written by Gabriel R.

 for(uint j = i+1; j < currSol.sequence.size()-1; j++) {

 TSPMove move = {(int)i, (int)j};

 double improvement = evaluate2OptMove(currSol, tsp, move);

 if(improvement < 0) { // Improving move found

 make2OptMove(currSol, move);

 currCost += improvement;

 improved = true;

 break;

 }

 }

 }

 // If no 2-opt improvement, try 3-opt moves

 if(!improved) {

 for(uint i = 1; i < currSol.sequence.size()-4 && !improved; i++) {

 for(uint j = i+2; j < currSol.sequence.size()-2; j++) {

 TSPMove move1 = {(int)i, (int)j};

 // Try second reversal after first segment

 for(uint k = j+1; k < currSol.sequence.size()-1; k++) {

 TSPMove move2 = {(int)j+1, (int)k};

 double improvement = evaluate3OptMove(currSol, tsp,

move1, move2);

 if(improvement < 0) { // Improving move found

 make3OptMove(currSol, move1, move2);

 currCost += improvement;

 improved = true;

 break;

 }

 }

 if(improved) break;

 }

 }

 }

 }

 bestSol = currSol;

 return true;

 }

 catch(std::exception& e) {

 std::cout << ">>>EXCEPTION: " << e.what() << std::endl;

 return false;

 }

}

264 MeMoCO Simple (for real)

Written by Gabriel R.

This implementation:

1. Uses a first-improvement strategy but explores both 2-opt and 3-opt neighborhoods

2. Tries 2-opt moves first since they're simpler, then moves to 3-opt if no improvement is found

3. Evaluates moves efficiently by only calculating the cost difference of affected edges

4. Maintains the fixed start/end node (0) by not including it in moves

5. Uses helper methods to keep the code organized and maintainable

6. Includes proper exception handling

The solver follows a hierarchical neighborhood structure - it first tries simpler moves (2-opt) before
attempting more complex ones (3-opt), which is generally more efficient than always exploring the full
3-opt neighborhood.

Remember what we are doing:

- In the context of the Traveling Salesman Problem (TSP), 2-opt and 3-opt moves are
fundamental techniques for improving an existing solution through local search.

- The 2-opt move involves selecting two nonadjacent arcs of the current path and swapping
them with two new arcs in order to obtain a new valid path. Operationally, this results in
reversing a sub-sequence of the path. For example, if we have the path <1,2,3,4,5,6,7,8,1> and
select the arcs (2,3) and (6,7), after the 2-opt move we will get the path <1,2,6,5,4,3,7,8,1>.
This operation is equivalent to “uncrossing” two intersecting arcs in the path design.

- The 3-opt move is a generalization of 2-opt involving three arcs instead of two. In this case,
three nonadjacent arcs are selected, and the path is reorganized by considering all possible
ways of reconnecting the resulting segments. In practice, this is equivalent to performing two
sub-sequence reversals. Going back to the previous example, a 3-opt move could transform
the path <1,2,3,4,5,6,7,8,1> into <1,2,7,6,3,4,5,8,1>, reversing two distinct segments of the
path.

- The combined use of these moves allows the exploration of a wider neighborhood than the
current solution. The 2-opt is simpler and faster to implement, while the 3-opt can find
improvements that the 2-opt cannot identify, but it requires more computational time since it
explores a larger number of possible changes. In practice, we often start by looking for
improvements with 2-opt moves and, only if none are found, move on to the more complex 3-
opt moves.

- It is important to note that both moves maintain path validity: the result is always a
Hamiltonian cycle that visits all nodes exactly once, changing only the order in which they are
visited.

265 MeMoCO Simple (for real)

Written by Gabriel R.

Let’s see the professor solution instead – first define the 2-opt-move:

TSPSolution& TSPSolver::apply2OptMove(TSPSolution& tspSol, const TSPMove& move)

const {

 for(int i = move.substring_begin, i = move.substring_end; i++) {

 tspSol.sequence[i] = tspSol.sequence[move.substring_end - (i -

move.substring_begin)]; // Reverse subsequence

 }

 return tspSol;

}

Then, inside the solve() method, we would have to apply this move for every possible move,
generating all of the possible pairs for the substrings combinations:

We would need to apply for the move for every possible pair of city so to update the cost accordingly
and then reverse the actual string:

266 MeMoCO Simple (for real)

Written by Gabriel R.

The professor told us this is a very “bad” implementation, to be found inside of the Internet with: “how
can i implement local search for tsp”. Consider in case sources like this one to understand more.

bool TSPSolver::solve (const TSP& tsp , const TSPSolution& initSol , TSPSolution&

bestSol)

{

 try

 {

 bool stop = false;

 int iter = 0;

 TSPSolution currSol(initSol);

 while (! stop) {

 if (tsp.n < 20) currSol.print(); std::cout << '\n';

 /// TODO: replace the following by the local search iteration

 // that updates currSol if an improving neighbor exists and

 // stops otherwise

 TSPMove move;

 TSPSolution neighSol(tsp);

 TSPSolution neighBest(currSol);

 for (int i_subs_init = 1 ; i_subs_init < currSol.sequence.size()-2;

++i_subs_init) {

 for (int i_subs_end = i_subs_init+1 ; i_subs_end <

currSol.sequence.size()-1; ++i_subs_end) {

 move.substring_begin = i_subs_init;

 move.substring_end = i_subs_end;

 neighSol = apply2optMove(currSol,move);

 //if (i_subs_init == 1 && i_subs_end == i_subs_init+1)

neighSol.print();

 double neighCost = this->evaluate(neighSol,tsp);

 double bestCost = this->evaluate(neighBest,tsp);

 double neighImprov = neighCost - bestCost;

 if (neighImprov < -1e-6) {

 neighBest = neighSol;

 }

 }

 }

 double currCost = this->evaluate(currSol,tsp);

 double bestCost = this->evaluate(neighBest,tsp);

 if (bestCost - currCost < -1e-6) {

 currSol = neighBest;

 } else {

 stop = true;

 }

 }

 bestSol = currSol;

 }

https://dm865.github.io/assets/dm865-tsp-ls-handout.pdf

267 MeMoCO Simple (for real)

Written by Gabriel R.

 catch(std::exception& e)

 {

 std::cout << ">>>EXCEPTION: " << e.what() << std::endl;

 return false;

 }

 return true;

}

Specifically:

1. In the solve method, the code iterates over all possible 2-opt moves by considering all pairs of
substring start and end positions.

2. For each move, it creates a new neighSol solution by applying the 2-opt move to the current
solution using the apply2optMove method.

3. It evaluates the cost of the neighbor solution using the evaluate method.

4. It compares the cost of the neighbor solution with the best neighbor solution found so far and
updates neighBest if the current neighbor is better.

5. After considering all possible moves, it updates currSol with neighBest if an improvement is
found, otherwise, it stops the search.

The inefficiency in this implementation lies in the fact that it applies the 2-opt move and evaluates the
entire solution for each possible move. This involves unnecessary computations and memory
allocations.

Inside the “1-essential” folder, there is a more efficient implementation, with code as follows:

1. In the solve method, it calls the findBestNeighborDecrement method to find the best 2-
opt move and its corresponding cost decrement.

2. The findBestNeighborDecrement method iterates over all possible 2-opt moves, but
instead of applying the move and evaluating the entire solution, it calculates the cost variation
directly.

o It retrieves the cities before and after the substring (h, i, j, l) based on the current
solution's sequence.

o It calculates the cost variation by subtracting the costs of the removed edges (h-i and j-
l) and adding the costs of the new edges (h-j and i-l).

o It updates bestDecrement and the corresponding move if a better cost decrement is
found.

3. If a move with a negative cost decrement is found, it applies the move using apply2optMove
and continues the search. Otherwise, it stops the search.

268 MeMoCO Simple (for real)

Written by Gabriel R.

The efficiency in the second implementation comes from the following:

1. It avoids creating new solution objects and evaluating the entire solution for each move.
Instead, it calculates the cost variation solely based on the cities involved in the move.

2. It uses the findBestNeighborDecrement method to find the best move and its cost decrement
in a single pass, reducing redundant computations.

3. It applies the move only when an improvement is found, avoiding unnecessary solution
modifications – just when needed.

Inside the header file:

 double findBestNeighborDecrement (const TSP& tsp , const TSPSolution& currSol ,

TSPMove& move);

Inside the cpp file:

bool TSPSolver::solve (const TSP& tsp , const TSPSolution& initSol , TSPSolution&

bestSol)

{

 try

 {

 bool stop = false;

 int iter = 0;

 TSPSolution currSol(initSol);

 TSPMove move;

 while (! stop) {

 if (tsp.n < 20) currSol.print(); //log current solution (only

small instances)

 double bestDecrement = findBestNeighborDecrement(tsp,currSol,move);

 std::cout << "(" << ++iter << "ls) move " << move.substring_init <<

" , " << move.substring_end << " improves by " << bestDecrement << std::endl;

 if (bestDecrement < -1e-6) {

 currSol = apply2optMove(currSol,move);

 stop = false;

 } else {

 stop = true;

 }

 }

 bestSol = currSol;

 }

 catch(std::exception& e)

 {

 std::cout << ">>>EXCEPTION: " << e.what() << std::endl;

 return false;

 }

 return true;

}

269 MeMoCO Simple (for real)

Written by Gabriel R.

This is based on this move present inside the slide (focused formula) – compute the best decrement
without needing the cost, only the cost variation:

An output example might be the following:

0 11 1 9 5 6 10 8 3 7 2 4 0 ###

0 11 1 9 5 6 10 8 3 7 2 4 0

0 1 11 9 5 6 10 8 3 7 2 4 0

0 1 11 9 5 6 10 8 7 3 2 4 0

0 1 11 9 2 3 7 8 10 6 5 4 0

0 1 11 9 10 8 7 3 2 6 5 4 0

0 1 11 9 10 8 7 3 4 5 6 2 0

0 1 11 9 10 8 7 6 5 4 3 2 0

0 1 11 10 9 8 7 6 5 4 3 2 0

FROM solution: 0 11 1 9 5 6 10 8 3 7 2 4 0 (value : 126)

TO solution: 0 1 11 10 9 8 7 6 5 4 3 2 0 (value : 72)

in 0.0159369 seconds (user time)

in 0.017 seconds (CPU time)

270 MeMoCO Simple (for real)

Written by Gabriel R.

20 LABORATORY 8 – COLUMN-GENERATION BASED HEURISTIC FOR

1D-CUTTING STOCK PROBLEM

Downloading from the Moodle the same name folder (TODO version ofc), we have two environments,
in order to create the master and the slave problem. We start from the main file here.

The code sets up a master Linear Programming (LP) problem and iteratively generates new columns
(cutting patterns) through the following key components:

- The main data structures and initialization:

DECL_ENV(env); // CPLEX environment

DECL_PROB(env, lp); // CPLEX problem

CS1D cs1dSolver(env, lp); // Custom solver class

Data data; // Problem data

data.read(argv[1]); // Read input

cs1dSolver.initMaster(data); // Initialize master problem

- The core column generation loop:

while(newcol) {

 // Key components here:

 // 1. Solve master LP to get dual values

 // 2. Solve pricing subproblem to find new columns

 // 3. Add new column if found or terminate if none found

}

The master problem and pricing subproblem work together in this way:

1. The master problem starts with a subset of cutting patterns and solves the LP relaxation
(continuous) to get:

• Primal solution (x): How many times to use each pattern
• Dual solution (u): Shadow prices for the demand constraints, information to get the new

column

2. The pricing subproblem uses these dual values to:

• Search for a new cutting pattern with negative reduced cost
• Add this pattern as a new column to the master if found
• Return false if no negative reduced cost pattern exists

271 MeMoCO Simple (for real)

Written by Gabriel R.

Once the column generation loop terminates, we have solved the LP relaxation optimally. The code
then uses two different methods to find integer solutions:

1. Simple rounding:

// Round up each variable value

for (unsigned int i = 0; i < x.size(); i++) {

 x[i] = (x[i] > 1e-5) ? ceil(x[i]) : 0.0;

}

2. Branch-and-bound on generated columns:

cs1dSolver.branchAndBoundOnThePartialModel(x, INTobjval2);

This applies integer programming techniques on the restricted set of columns found during column
generation.

The key insight is that column generation allows us to solve large problems by dynamically generating
only the "good" cutting patterns as needed, rather than enumerating all possible patterns upfront. The
pricing subproblem efficiently finds these good patterns by solving a knapsack problem using the dual
values from the master problem.

This implements what's known as a "price-and-cut" approach:

• Price: Generate new columns through the pricing subproblem
• Cut: Solve the master LP with the current columns
• Repeat until no negative reduced cost columns remain

The integer solutions found at the end are heuristic since we may have missed some patterns that
could be useful in the integer optimal solution but weren't needed for the LP relaxation.

First of all, we solve the master and then call the slave:

while(newcol){
 //TODO...
 // - solve master obtaining dual information
 cs1dSolver.solveMasterLP(x, u, objval);

std::cout << "*** IT " << it++ << " *** " << " LPobj: " << objval << " x: ";
 if (x.size() < 10) for (unsigned int j = 0; j < x.size(); j++)

std::cout << setw(7) << x[j] << " ";

std::cout << std::endl;

 // - call the slave [price] with dual information (the slave
also adds a variable to the master, if any, otherwise it returns false)
 cs1dSolver.price(env2, data, u);

}

272 MeMoCO Simple (for real)

Written by Gabriel R.

This is a sophisticated example of decomposition - breaking down a complex problem into more
manageable master and subproblems that work together through the dual values to find an optimal
solution.

Inside of cs1d file, we will complete the method to solve the master LP (which is restricted) as follows:

void CS1D::solveMasterLP(std::vector<double>& x, std::vector<double>& u, double&
objval)
{
 //TODO
 // solve using CPX*lp*opt
 CHECKED_CPX_CALL(CPXlpopt, env, lp);
 // get current LP obj value (reference objval)
 CHECKED_CPX_CALL(CPXgetobjval, env, lp, &objval);
 // get current RESTRICTED LP PRIMAL solution (reference x)
 int n = CPXgetnumcols(env, lp);
 x.resize(n);
 CHECKED_CPX_CALL(CPXgetx, env, lp, &x[0], 0, n - 1);
 // get current RESTRICTED LP DUAL solution using *CPXgetpi* (reference u)
 int m = CPXgetnumrows(env, lp);
 u.resize(m);
 CHECKED_CPX_CALL(CPXgetpi, env, lp, &u[0], 0, m - 1);

}

Above, we:

- solves the restricted master problem, which contains only the columns (cutting patterns)
generated so far

- retrieves the objective value of the current solution - in the cutting stock context, this
represents the total number of stock pieces needed with the current set of patterns.

- retrieves the primal solution - how many times each cutting pattern should be used. The vector
is resized to match the current number of patterns,

- retrieves the dual values (or shadow prices) associated with the demand constraints.

Now we go into the detail of the pricing procedure; find the minimum possible reduced cost
(maximum violation in dual terms) – a column s.t. we find the master problem:

The knapsack problem is solved efficiently with dynamic programming; we will use the exec function
from the knapsack.h file present in the same folder.

273 MeMoCO Simple (for real)

Written by Gabriel R.

This function determines if there are any beneficial new cutting patterns to add to the master problem.
The pricing problem needs to solve a knapsack problem where:

- The "weights" are the item lengths
- The "capacity" is the stock length
- The "values" are the dual values from the master problem
- The solution indicates how many of each item to include in a new cutting pattern

In column generation terms:

- The reduced cost tells us if a new pattern would improve the master solution
- A negative reduced cost means the pattern would help decrease the objective value
- If no negative reduced cost pattern exists, we've reached optimality

If we find a beneficial pattern, we need to add it to the master problem and solve that to optimality.
The final implementation would be:

bool CS1D::price(Env pricerEnv, const Data& data, const std::vector<double>& u)
{
 KPSolver kp(pricerEnv);
 std::vector<double> z;
 double value;

 //CALL kp.exec to solve the right knapsack problem and get
 // the related objective function into < value >
 //TODO...
 kp.exec(data.L, u, data.W, z, value);

 //TODO...
 //"return false" if NO negative reduced cost variable exists
 if (value <= 1 + 1e-5) return false; // 1 + 1e-5 is the tolerance for numeric
issues
 // could be evem if(1 - value > -ZERO_EPS) return false;
 // if the valye is 1.000001, the reduced cost is - 0.000001, which is negative.
 // Because of possible numerical issues, we consider this number as 0.

 // Add one column to RMP:
 // prepare parameters for following *CPXaddcols*
 //TODO...
 // - the vector idx of the indexes of the rows in which the variable appears
with (nonzero) oefficient
 // - the vector coef of the (nonzero) coefficients related to the row indexes
above
 // - the coefficient obj in the objective function
 //...

 std::vector<int> idx;
 std::vector<double> coef;
 int m = z.size();
 for (int i = 0; i < m; i++)
 {
 if (z[i] > 1e-5)
 {
 idx.push_back(i);

274 MeMoCO Simple (for real)

Written by Gabriel R.

 coef.push_back(z[i]);
 }
 }
 double obj = 1.0;
 int matbeg = 0;

 // add the variable to the model
 CHECKED_CPX_CALL(CPXaddcols, env, lp, 1, idx.size(), &obj, &matbeg, &idx[0],
&coef[0], NULL, NULL, NULL);
 //status = CPXaddcols (env, lp, ccnt, nzcnt, obj, cmatbeg, cmatind, cmatval, lb,
ub, newcolname);
 return true;
}

This implementation illustrates the elegant interplay between the master and pricing problems in
column generation.

- By solving a knapsack problem that uses the current dual values as profits and piece lengths
as weights, it efficiently identifies cutting patterns that could improve the overall solution

- The function handles numerical precision issues through careful tolerance checks and sparse
data structures, ensuring both reliability and computational efficiency

- Each time it finds a beneficial pattern, it expands the master problem's solution space,
gradually building towards the optimal cutting strategy through an iterative process that only
generates patterns as they become potentially useful

Some of the results appear here:

275 MeMoCO Simple (for real)

Written by Gabriel R.

This implementation demonstrates the effectiveness of column generation for solving large cutting
stock problems:

1. The master problem starts with basic single-item patterns and progressively generates more
complex patterns only as needed.

2. The pricing mechanism efficiently identifies beneficial new patterns by solving knapsack
problems using the dual values from the master problem.

3. The final integer solutions are obtained through two different approaches:
o Simple rounding provides a quick but potentially loose bound
o Branch-and-bound on the restricted problem provides a more refined solution

The relatively small gap between the LP relaxation (46.25) and the best integer solution (47) suggests
that the column generation approach was effective at identifying good cutting patterns.

276 MeMoCO Simple (for real)

Written by Gabriel R.

WARNING – I was NOT able to compile this lab using the ilolpex import method as done before; there
is no actual way to make this project work even when modifying the Makefile and the cpxmacro. What
I did on Windows was to simply click “Build” (green Play button) above and to give as argument in
debug window one .dat file and it works! You can see below how (works with others too).

277 MeMoCO Simple (for real)

Written by Gabriel R.

278 MeMoCO Simple (for real)

Written by Gabriel R.

21 EXTRA: WINDOWS CPLEX COMPILATION – INFO & INSTRUCTIONS

To execute the code, we need in order:

- Visual Studio IDE (note: this is different from Visual Studio Code)
o Installing the Community Version from here

- A C++ compiler
o You can either use MinGW (here) or MSVC (done when selecting “Develop C++

applications” when installing Visual Studio
- CPLEX Studio installed on your machine (current version is 22.11)

o All of the info present in the Moodle of the course here

The problem on Windows is evidenced by the fact that fatal errors might occur, like:

As seen here, a normal execution of Cplex would include:

C:\Program Files\IBM\ILOG\CPLEX_Studio_Community201\cplex\include

C:\Program Files\IBM\ILOG\CPLEX_Studio_Community201\concert\include

These folder need to be configured inside of the additional inclusions and also additional
dependencies in the form of files and directives to the compiler.

The most recent versions (up to 2019, current is 2022) do not allow complete editing of the
compilation options as you might see here.

As found within the internal group of the course, the main problem seems to be that there is not
cpxmacro.h file inside of Windows installations, so if we try to use it in our project we have problem
with functions for declaration of env, adding variables and constraints.

- Also, after doing all the stuff that are mentioned inside the files (this or the above one) we need
to import cpxmacro.h in order to work properly and that we can use all APIs and just everything
has to be imported before running all the code

- It is easier to copy cpxmacro.h in the cplex/include folder and you can include it just with that
small adjustment

https://visualstudio.microsoft.com/it/downloads/
https://sajidifti.medium.com/how-to-install-gcc-and-gdb-on-windows-using-msys2-tutorial-0fceb7e66454
https://stem.elearning.unipd.it/mod/page/view.php?id=546620
https://adam-rumpf.github.io/documents/cplex_in_cpp.pdf
https://www.leandro-coelho.com/how-to-configure-ms-visual-studio-to-use-ibm-cplex-concert/

279 MeMoCO Simple (for real)

Written by Gabriel R.

21.1 WINDOWS CPLEX COMPILATION – SOLUTION 1

The solution is actually the following:

- Once you have installed Visual Studio and CPLEX on your machine, you should take some
ready-made examples, so to import a Solution file (basically, a configuration file which needs
to be imported in order to make the execution work) and then an executable file with a main()

The paths to consider for solution files are the following:

- C++ files:

C:\Program

Files\IBM\ILOG\CPLEX_Studio2211\cplex\examples\x64_windows_msvc14\stat_mda

- C files:

C:\Program

Files\IBM\ILOG\CPLEX_Studio2211\cplex\examples\x64_windows_msvc14\stat_mdd

These folders report a lot of different files which are the “Solution” files; we need to consider files with
extension .vcxproj. The goal here would be to first select a Solution file and then select a C/C++ file of
the same name. So:

- If you want to execute a C example, go the “mda”
- If you want to execute a C++ example, go to “mdd”

For instance, let’s consider ilolpex1.vcproj, which is a C++ file:

We then need the actual source codes, which are to be linked with the respective vcxproj files of
before. Once again, it’s different for both formats:

- C files:

C:\Program Files\IBM\ILOG\CPLEX_Studio2211\cplex\examples\src\c

- C++ files:

C:\Program Files\IBM\ILOG\CPLEX_Studio2211\cplex\examples\src\cpp

280 MeMoCO Simple (for real)

Written by Gabriel R.

We then take the file of the same name as before:

We need both files in order to import them into Visual Studio and then customize the code of the
actual source file (C/C++) so to make the code work fine. We then create a folder with a custom name
on a custom location with both files, like the following:

We then open Visual Studio loading the vcxproj file on “Open a project or a solution” file.

281 MeMoCO Simple (for real)

Written by Gabriel R.

Once the prompt is open, select the Windows SDK version and multiplatform by default and continue.

WARNING

At this point, since the vcxproj file points to files present in the previous path (so inside of the Cplex
path), it will tell you “Impossible to open file”, since it does not see the local path:

282 MeMoCO Simple (for real)

Written by Gabriel R.

What you will do to solve this problem, is to right-click the name of project in the right menu present
(in this case where there is ilolpex1) and then click “Add” (Aggiungi) and then click on “Existing
element” (Elemento esistente):

Here we will select the actual C/C++ file:

Please remove the old file, which is not to be found, so you have only one, the correctly imported file.
You should see something like this:

283 MeMoCO Simple (for real)

Written by Gabriel R.

We then build the actual file, and a command prompt window will feedback the right execution here
(this is a different execution, the example run in the laboratory, so you have an idea):

This way, any kind of project works. This was tested both on C and C++ files.

284 MeMoCO Simple (for real)

Written by Gabriel R.

21.2 WINDOWS CPLEX COMPILATION – SOLUTION 2

Another way to make this work is to create a C++ project from scratch and then right click on the right
side menu on Properties so to open the following window – adapted from 4-5 page of this.

Then, one goes to “Linker” > “General” > “Additional library directories”:

Here, one then adds the mda/mdd folders as path:

which are:, I remember:

- C:\Program

Files\IBM\ILOG\CPLEX_Studio2211\cplex\lib\x64_windows_msvc14\stat_mdd

- C:\Program

Files\IBM\ILOG\CPLEX_Studio2211\cplex\lib\x64_windows_msvc14\stat_mda

https://adam-rumpf.github.io/documents/cplex_in_cpp.pdf

285 MeMoCO Simple (for real)

Written by Gabriel R.

Then, in the “Linker” > “Input” tab, click on “Additional dependencies”:

Add all of the files which are .lib files inside of the mda/mdd folders:

They are concert.lib (concert directory of before and the two above files), separated with a semicolon
when inserted:

286 MeMoCO Simple (for real)

Written by Gabriel R.

22 WHAT TO INCLUDE IN A CPLEX PROJECT TO MAKE IT WORK ON

WINDOWS

Requirement

Set as env variable CPLEX to be easily found (test with terminal too):

Step 1: Library Directories

- In Properties, navigate to:
o Configuration Properties > C++ > General

- Find "Additional Library Directories"
- Add these paths:

Step 2: Library Dependencies

- In Properties, navigate to:
o Configuration Properties > Linker > Input

- Find "Additional Dependencies"

287 MeMoCO Simple (for real)

Written by Gabriel R.

- Add these libraries:

	2 Introduction (1)
	3 Modeling by linear programming (2)
	3.1 Description and features
	3.2 Optimal Production Mix – Perfumes
	3.3 Minimum Cost Covering – Diet
	3.4 Transportation Problem
	3.5 Fixed Costs and Big-M Constraints
	3.6 A more complex problem – Moving scaffolds (+ 2 Variants)
	3.7 Emergency Location – Minimum Cost Covering
	3.8 TLC Antennas – Minimum Cost Covering
	3.9 Job Scheduling Problem – Four Italian Friends
	3.10 Energy Flow Problem (Single/Multi)
	3.11 Other Models: Pharmacy Federation Turns (Variant 1 and 2)
	3.12 Other Models: Boat Construction
	3.13 Other Models: Router Communication Network

	4 Metaheuristics (3)
	4.1 Classification of methods
	4.2 Constructive Heuristics
	4.3 Greedy Algorithms
	4.4 Exact method algorithms and Simplification of Exact Procedures
	4.5 Neighborhood and Local Search
	4.6 Local Search Scheme
	4.7 Initial Solution and Solution Representation
	4.8 Neighborhood Representation: Starting Solution and Representation
	4.9 Complexity and evaluation function of solutions
	4.10 Exploring strategies and LS application to TSP
	4.11 Neighborhood Search/Trajectory Methods
	4.12 Tabu Search
	4.13 Simulated Annealing
	4.14 Population-based heuristics
	4.15 Genetic Algorithms: Schema, Encoding, Operators
	4.16 Fitness Function and Genetic Operators
	4.17 Population Management
	4.18 Observations on Genetic Algorithms: Calibration & Performance
	4.19 Hybrid Metaheuristics

	5 Linear Programming & Simplex Method (4)
	5.1 Definition and General Notations
	5.2 Geometry of Linear Programming
	5.3 Simplex Basic Algorithm and Example
	5.4 Two-Phase Method
	5.5 Simplex Algorithm in Matrix Form and Revised Algorithm

	6 Review of Duality in Linear Programming (5)
	6.1 Dual Problem Definition and Duality Theorems
	6.2 Primal-dual Optimality Conditions
	6.3 The Simplex Method and Duality
	6.4 Duality Example and Problem Modifications

	7 Column generation methods (6)
	7.1 An interesting problem: Cutting rods – Model and Solution
	7.2 Algorithm for the 1D-CSP
	7.3 Column generation methods for LP Problems
	7.4 Implementation issues – Convergence

	8 Solution methods for ILP – Branch and Bound and Alternative Formulations (7)
	8.1 Branch and Bound – Definition of the problem
	8.1.1 Complete Branch and Bound example
	8.1.2 Formal Description and Model
	8.1.3 Implementation Issues

	8.2 Alternative formulations – Polyhedral approach to LP
	8.2.1 Example: Facility Location Problem and Better Formulations
	8.2.2 Convex Hull and Ideal Formulation

	8.3 Cutting Plane Methods
	8.3.1 Gomory Cuts
	8.3.2 Complete Example

	9 Cover inequalities (8)
	9.1 Cover Inequalities for the Knapsack Problem
	9.2 Separation Procedure
	9.3 Cover Inequalities for General Binary Problems and General Procedure
	9.4 Hybrid Methods, Exercises and CPLEX Output

	10 FOR READING - Ideal Formulations, Assignment Problem and Total unimodularity (9)
	10.1 Assignment Problem
	10.2 TU Matrices Properties and Other Problems

	11 FOR READING - Exact Methods for the TSP – Models and Methods (10)
	12 Last Meeting of the Course
	12.1 First Part – Hybrid Metaheuristics
	12.2 Second Part – Talking about the Exam
	12.3 Third Part – Talking about the Exercise

	13 Laboratory 1 - Solvers for Mathematical Programming (Docplex)
	13.1 Make Docplex Run!

	14 Laboratory 2 – Solvers: Docplex (Continuation)
	15 Laboratory 3 – Transportation and domains constraints
	16 Laboratory 4 – Fixed costs model and Efficient structures
	17 Laboratory 5 – CPLEX APIs – Intro, Constraints and Model example
	18 Laboratory 6 – CPLEX APIs – Concluding Scaffolds modeling
	19 Laboratory 7 – Neighborhood Search for the Symmetric TSP (Tabu Search)
	20 Laboratory 8 – Column-generation based Heuristic for 1D-Cutting Stock Problem
	21 Extra: Windows Cplex Compilation – Info & Instructions
	21.1 Windows Cplex Compilation – Solution 1
	21.2 Windows Cplex Compilation – Solution 2

	22 What to include in a Cplex Project to make it work on Windows

